Finitude homologique des foncteurs sur une catégorie additive et applications
HTML articles powered by AMS MathViewer
- by Aurélien Djament and Antoine Touzé;
- Trans. Amer. Math. Soc. 376 (2023), 1113-1154
- DOI: https://doi.org/10.1090/tran/8745
- Published electronically: October 24, 2022
- HTML | PDF | Request permission
Abstract:
We give sufficient conditions which ensure that a functor of finite length from an additive category to finite-dimensional vector spaces has a projective resolution whose terms are finitely generated. For polynomial functors, we study also a weaker homological finiteness property, which applies to twisted homological stability for matrix monoids. This is inspired by works by Schwartz and Betley-Pirashvili, which are generalised; this also uses decompositions à la Steinberg over an additive category that we recently obtained with Vespa. We show also, as an application, a finiteness property for stable homology of linear groups on suitable rings.References
- Séminaire Henri Cartan, 11e anné: 1958/59. Invariant de Hopf et opérations cohomologiques secondaires, Secrétariat Mathématique, École Normale Supérieure, Paris, 1959 (French). 2e éd. 2 vols. MR 124047
- Maurice Auslander, Coherent functors, Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965) Springer-Verlag New York, Inc., New York, 1966, pp. 189–231. MR 212070
- Maurice Auslander, A functorial approach to representation theory, Representations of algebras (Puebla, 1980) Lecture Notes in Math., vol. 944, Springer, Berlin-New York, 1982, pp. 105–179. MR 672116
- Stanisław Betley and Teimouraz Pirashvili, Twisted (co)homological stability for monoids of endomorphisms, Math. Ann. 295 (1993), no. 4, 709–720. MR 1214957, DOI 10.1007/BF01444912
- A. K. Bousfield and D. M. Kan, The core of a ring, J. Pure Appl. Algebra 2 (1972), 73–81. MR 308107, DOI 10.1016/0022-4049(72)90023-0
- Daniel Bravo, James Gillespie, and Marco A. Pérez, Locally type fp$_n$ and $n$-coherent categories, arXiv:1908.10987.
- Kenneth S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York-Berlin, 1982. MR 672956, DOI 10.1007/978-1-4684-9327-6
- Thomas Church and Jordan S. Ellenberg, Homology of FI-modules, Geom. Topol. 21 (2017), no. 4, 2373–2418. MR 3654111, DOI 10.2140/gt.2017.21.2373
- Marc Culler and Karen Vogtmann, Moduli of graphs and automorphisms of free groups, Invent. Math. 84 (1986), no. 1, 91–119. MR 830040, DOI 10.1007/BF01388734
- Aurélien Djament, Sur l’homologie des groupes unitaires à coefficients polynomiaux, J. K-Theory 10 (2012), no. 1, 87–139 (French, with English and French summaries). MR 2990563, DOI 10.1017/is012003003jkt184
- Aurélien Djament, Des propriétés de finitude des foncteurs polynomiaux, Fund. Math. 233 (2016), no. 3, 197–256 (French, with English summary). MR 3480119, DOI 10.4064/fm954-8-2015
- Aurélien Djament and Antoine Touzé, Functor homology over an additive category, Prépublication disponible sur https://hal.archives-ouvertes.fr/hal-03432824.
- Aurélien Djament, Antoine Touzé, and Christine Vespa, Décompositions la Steinberg sur une catégorie additive, Prépublication disponible sur https://hal.archives-ouvertes.fr/hal-02103934, acceptée aux Annales Scientifiques de l’ENS.
- Aurélien Djament and Christine Vespa, Foncteurs faiblement polynomiaux, Int. Math. Res. Not. IMRN 2 (2019), 321–391 (French, with English and French summaries). MR 3903561, DOI 10.1093/imrn/rnx099
- Albrecht Dold and Dieter Puppe, Homologie nicht-additiver Funktoren. Anwendungen, Ann. Inst. Fourier (Grenoble) 11 (1961), 201–312 (German, with French summary). MR 150183, DOI 10.5802/aif.114
- Samuel Eilenberg and Saunders Mac Lane, On the groups $H(\Pi ,n)$. II. Methods of computation, Ann. of Math. (2) 60 (1954), 49–139. MR 65162, DOI 10.2307/1969702
- Samuel Eilenberg and Saunders MacLane, Homology theories for multiplicative systems, Trans. Amer. Math. Soc. 71 (1951), 294–330. MR 43774, DOI 10.1090/S0002-9947-1951-0043774-8
- Vincent Franjou, Extensions entre puissances extérieures et entre puissances symétriques, J. Algebra 179 (1996), no. 2, 501–522 (French). MR 1367860, DOI 10.1006/jabr.1996.0022
- Vincent Franjou, Eric M. Friedlander, Alexander Scorichenko, and Andrei Suslin, General linear and functor cohomology over finite fields, Ann. of Math. (2) 150 (1999), no. 2, 663–728. MR 1726705, DOI 10.2307/121092
- Vincent Franjou, Jean Lannes, and Lionel Schwartz, Autour de la cohomologie de Mac Lane des corps finis, Invent. Math. 115 (1994), no. 3, 513–538 (French, with English and French summaries). MR 1262942, DOI 10.1007/BF01231771
- Eric M. Friedlander and Andrei Suslin, Cohomology of finite group schemes over a field, Invent. Math. 127 (1997), no. 2, 209–270. MR 1427618, DOI 10.1007/s002220050119
- Mamuka Jibladze and Teimuraz Pirashvili, Cohomology of algebraic theories, J. Algebra 137 (1991), no. 2, 253–296. MR 1094244, DOI 10.1016/0021-8693(91)90093-N
- B. Johnson and R. McCarthy, Deriving calculus with cotriples, Trans. Amer. Math. Soc. 356 (2004), no. 2, 757–803. MR 2022719, DOI 10.1090/S0002-9947-03-03318-X
- Brenda Johnson and Randy McCarthy, Linearization, Dold-Puppe stabilization, and Mac Lane’s $Q$-construction, Trans. Amer. Math. Soc. 350 (1998), no. 4, 1555–1593. MR 1451606, DOI 10.1090/S0002-9947-98-02067-4
- Henning Krause, Koszul, Ringel and Serre duality for strict polynomial functors, Compos. Math. 149 (2013), no. 6, 996–1018. MR 3077659, DOI 10.1112/S0010437X12000814
- Nicholas J. Kuhn, Generic representations of the finite general linear groups and the Steenrod algebra. II, $K$-Theory 8 (1994), no. 4, 395–428. MR 1300547, DOI 10.1007/BF00961409
- Nicholas J. Kuhn, Generic representations of the finite general linear groups and the Steenrod algebra. III, $K$-Theory 9 (1995), no. 3, 273–303. MR 1344142, DOI 10.1007/BF00961668
- Jean-Louis Loday, Cyclic homology, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 301, Springer-Verlag, Berlin, 1998. Appendix E by María O. Ronco; Chapter 13 by the author in collaboration with Teimuraz Pirashvili. MR 1600246, DOI 10.1007/978-3-662-11389-9
- Saunders Mac Lane, Categories for the working mathematician, 2nd ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998. MR 1712872
- T. I. Pirashvili, Polynomial functors, Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR 91 (1988), 55–66 (Russian, with English summary). MR 1029007
- N. Popescu, Abelian categories with applications to rings and modules, London Mathematical Society Monographs, No. 3, Academic Press, London-New York, 1973. MR 340375
- Geoffrey M. L. Powell, The structure of indecomposable injectives in generic representation theory, Trans. Amer. Math. Soc. 350 (1998), no. 10, 4167–4193. MR 1458333, DOI 10.1090/S0002-9947-98-02125-4
- Chrysostomos Psaroudakis, Homological theory of recollements of abelian categories, J. Algebra 398 (2014), 63–110. MR 3123754, DOI 10.1016/j.jalgebra.2013.09.020
- Andrew Putman and Steven V. Sam, Representation stability and finite linear groups, Duke Math. J. 166 (2017), no. 13, 2521–2598. MR 3703435, DOI 10.1215/00127094-2017-0008
- Daniel Quillen, Finite generation of the groups $K_{i}$ of rings of algebraic integers, Algebraic $K$-theory, I: Higher $K$-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 341, Springer, Berlin-New York, 1973, pp. 179–198. MR 349812
- Oscar Randal-Williams and Nathalie Wahl, Homological stability for automorphism groups, Adv. Math. 318 (2017), 534–626. MR 3689750, DOI 10.1016/j.aim.2017.07.022
- Steven V. Sam and Andrew Snowden, Gröbner methods for representations of combinatorial categories, J. Amer. Math. Soc. 30 (2017), no. 1, 159–203. MR 3556290, DOI 10.1090/jams/859
- Alexander Scorichenko, Stable K-theory and functor homology, ProQuest LLC, Ann Arbor, MI, 2000. Thesis (Ph.D.)–Northwestern University. MR 2700820
- Antoine Touzé, Connectedness of cup products for polynomial representations of $\textrm {GL}_n$ and applications, Ann. K-Theory 3 (2018), no. 2, 287–329. MR 3781429, DOI 10.2140/akt.2018.3.287
- Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994. MR 1269324, DOI 10.1017/CBO9781139644136
Bibliographic Information
- Aurélien Djament
- Affiliation: CNRS, Univ. Lille, UMR 8524 - Laboratoire Paul Painlevé, F-59000 Lille, France
- ORCID: 0000-0001-7788-9133
- Email: aurelien.djament@univ-lille.fr
- Antoine Touzé
- Affiliation: Univ. Lille, CNRS, UMR 8524 - Laboratoire Paul Painlevé, F-59000 Lille, France
- ORCID: 0000-0002-9280-6647
- Email: antoine.touze@univ-lille.fr
- Received by editor(s): November 19, 2021
- Received by editor(s) in revised form: May 3, 2022, and May 6, 2022
- Published electronically: October 24, 2022
- Additional Notes: Les auteurs ont bénéficié du soutien partiel de l’Agence Nationale de la Recherche, via le projet ANR ChroK (ANR-16-CE40-0003), le Labex CEMPI (ANR-11-LABX-0007-01), et, pour le premier auteur, le projet ANR AlMaRe (ANR-19-CE40-0001-01). Ils ne soutiennent pas pour autant le principe de l’ANR, dont ils revendiquent la restitution des moyens aux laboratoires sous forme de crédits récurrents.
- Dedicated: Dédié à S. Betley, T. Pirashvili et L. Schwartz pour leurs contributions pionnières au sujet.
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 1113-1154
- MSC (2020): Primary 18A25, 18E10, 18G15, 20J06; Secondary 18A40, 18E05, 18G31
- DOI: https://doi.org/10.1090/tran/8745
- MathSciNet review: 4531671