Convolution of beta prime distribution
HTML articles powered by AMS MathViewer
- by Rui A. C. Ferreira and Thomas Simon;
- Trans. Amer. Math. Soc. 376 (2023), 855-890
- DOI: https://doi.org/10.1090/tran/8748
- Published electronically: December 1, 2022
- HTML | PDF | Request permission
Abstract:
We establish some identities in law for the convolution of a beta prime distribution with itself, involving the square root of beta distributions. The proof of these identities relies on transformations on generalized hypergeometric series obtained via Appell series of the first kind and Thomae’s relationships for ${}_3F_2(1)$. Using a self-decomposability argument, the identities are applied to derive complete monotonicity properties for quotients of confluent hypergeometric functions having a doubling character. By means of probability, we also obtain a simple proof of Turán’s inequality for the parabolic cylinder function and the confluent hypergeometric function of the second kind. The case of Mill’s ratio is discussed in detail.References
- P. Appell and J. Kampé de Fériet, Fonctions hypergéometriques et hypersphériques, Gauthier-Villars, Paris, 1926.
- Richard Askey and Jet Wimp, Associated Laguerre and Hermite polynomials, Proc. Roy. Soc. Edinburgh Sect. A 96 (1984), no. 1-2, 15–37. MR 741641, DOI 10.1017/S0308210500020412
- Norman L. Johnson, Samuel Kotz, and N. Balakrishnan, Continuous univariate distributions. Vol. 2, 2nd ed., Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics, John Wiley & Sons, Inc., New York, 1995. A Wiley-Interscience Publication. MR 1326603
- Árpád Baricz, Mills’ ratio: monotonicity patterns and functional inequalities, J. Math. Anal. Appl. 340 (2008), no. 2, 1362–1370. MR 2390935, DOI 10.1016/j.jmaa.2007.09.063
- Árpád Baricz and Mourad E. H. Ismail, Turán type inequalities for Tricomi confluent hypergeometric functions, Constr. Approx. 37 (2013), no. 2, 195–221. MR 3019777, DOI 10.1007/s00365-012-9171-1
- Árpád Baricz, Saminathan Ponnusamy, and Sanjeev Singh, Turán type inequalities for confluent hypergeometric functions of the second kind, Studia Sci. Math. Hungar. 53 (2016), no. 1, 74–92. MR 3476242, DOI 10.1556/012.2016.53.1.1330
- Mieczysław Biernacki and Jan Krzyż, On the monotonity of certain functionals in the theory of analytic functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 9 (1955), 135–147 (1957) (English, with Russian and Polish summaries). MR 89903
- Lennart Bondesson, Generalized gamma convolutions and related classes of distributions and densities, Lecture Notes in Statistics, vol. 76, Springer-Verlag, New York, 1992. MR 1224674, DOI 10.1007/978-1-4612-2948-3
- A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and series. Vol. 3, Gordon and Breach Science Publishers, New York, 1990. More special functions; Translated from the Russian by G. G. Gould. MR 1054647
- Danny Dyer, The convolution of generalized $F$ distributions, J. Amer. Statist. Assoc. 77 (1982), no. 377, 184–189. MR 648043
- H. van Haeringen and L. P. Kok, Table errata: Higher transcendental functions, Vol. I [McGraw-Hill, New York, 1953; MR 15, 419] by A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Math. Comp. 41 (1983), no. 164, 778. MR 717721, DOI 10.1090/S0025-5718-1983-0717721-1
- Harold Exton, A note of the convolution of a generalised $F$-distribution, Statist. Probab. Lett. 12 (1991), no. 4, 315–316. MR 1131056, DOI 10.1016/0167-7152(91)90098-C
- Takahiro Hasebe, Noriyoshi Sakuma, and Steen Thorbjørnsen, The normal distribution is freely self-decomposable, Int. Math. Res. Not. IMRN 6 (2019), 1758–1787. MR 3932595, DOI 10.1093/imrn/rnx171
- Mourad E. H. Ismail and Douglas H. Kelker, Special functions, Stieltjes transforms and infinite divisibility, SIAM J. Math. Anal. 10 (1979), no. 5, 884–901. MR 541088, DOI 10.1137/0510083
- Mourad E. H. Ismail and Andrea Laforgia, Monotonicity properties of determinants of special functions, Constr. Approx. 26 (2007), no. 1, 1–9. MR 2310684, DOI 10.1007/s00365-005-0627-4
- Lancelot F. James, Bernard Roynette, and Marc Yor, Generalized gamma convolutions, Dirichlet means, Thorin measures, with explicit examples, Probab. Surv. 5 (2008), 346–415. MR 2476736, DOI 10.1214/07-PS118
- Sergei Kerov, Interlacing measures, Kirillov’s seminar on representation theory, Amer. Math. Soc. Transl. Ser. 2, vol. 181, Amer. Math. Soc., Providence, RI, 1998, pp. 35–83. MR 1618739, DOI 10.1090/trans2/181/02
- Torben Koch, Universal bounds and monotonicity properties of ratios of Hermite and parabolic cylinder functions, Proc. Amer. Math. Soc. 148 (2020), no. 5, 2149–2155. MR 4078099, DOI 10.1090/proc/14896
- Christian Krattenthaler and Tanguy Rivoal, How can we escape Thomae’s relations?, J. Math. Soc. Japan 58 (2006), no. 1, 183–210. MR 2204570
- Andrea Laforgia and Pierpaolo Natalini, Some inequalities for modified Bessel functions, J. Inequal. Appl. , posted on (2010), Art. ID 253035, 10. MR 2592860, DOI 10.1155/2010/253035
- N. N. Lebedev, Special functions and their applications, Revised English edition, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1965. Translated and edited by Richard A. Silverman. MR 174795, DOI 10.1063/1.3047047
- Gérard Letac and Mauro Piccioni, Random continued fractions with beta-hypergeometric distribution, Ann. Probab. 40 (2012), no. 3, 1105–1134. MR 2962088, DOI 10.1214/10-AOP642
- Sergei M. Sitnik and Khaled Mehrez, Proofs of some conjectures on monotonicity of ratios of Kummer, Gauss and generalized hypergeometric functions, Analysis (Berlin) 36 (2016), no. 4, 263–268. MR 3565963, DOI 10.1515/anly-2015-0029
- M. R. Sampford, Some inequalities on Mill’s ratio and related functions, Ann. Math. Statistics 24 (1953), 130–132. MR 54890, DOI 10.1214/aoms/1177729093
- Javier Segura, Uniform (very) sharp bounds for ratios of parabolic cylinder functions, Stud. Appl. Math. 147 (2021), no. 2, 816–833. MR 4313183, DOI 10.1111/sapm.12401
- J. Segura, Monotonicity properties for ratios and products of modified Bessel functions and sharp trigonometric bounds, Results Math. 76 (2021), no. 4, Paper No. 221, 22. MR 4328474, DOI 10.1007/s00025-021-01531-1
- Moshe Shaked and J. George Shanthikumar, Stochastic orders and their applications, Probability and Mathematical Statistics, Academic Press, Inc., Boston, MA, 1994. MR 1278322
- Thomas Simon, Produit beta-gamma et régularité du signe, Studia Sci. Math. Hungar. 51 (2014), no. 4, 429–453 (French, with French summary). MR 3277021, DOI 10.1556/SScMath.51.2014.4.1280
- Stanisław J. Szarek and Elisabeth Werner, A nonsymmetric correlation inequality for Gaussian measure, J. Multivariate Anal. 68 (1999), no. 2, 193–211. MR 1677442, DOI 10.1006/jmva.1998.1784
- Zhen-Hang Yang and Shen-Zhou Zheng, The monotonicity and convexity for the ratios of modified Bessel functions of the second kind and applications, Proc. Amer. Math. Soc. 145 (2017), no. 7, 2943–2958. MR 3637943, DOI 10.1090/proc/13522
Bibliographic Information
- Rui A. C. Ferreira
- Affiliation: Grupo Física-Matemática, Departamento de Matemática, Faculdade de Ciências da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal
- MR Author ID: 839886
- Email: raferreira@fc.ul.pt
- Thomas Simon
- Affiliation: Université de Lille, CNRS, UMR 8524 - Laboratoire Paul Painlevé, 59000 Lille, France
- MR Author ID: 640288
- Email: thomas.simon@univ-lille.fr
- Received by editor(s): June 29, 2021
- Received by editor(s) in revised form: February 22, 2022
- Published electronically: December 1, 2022
- Additional Notes: The first author was supported by the “Fundação para a Ciência e a Tecnologia (FCT)” through the program “Stimulus of Scientific Employment, Individual Support-2017 Call” with reference CEECIND/00640/2017
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 855-890
- MSC (2020): Primary 26A48, 33C15, 33C20, 33C45, 33C65, 60E07, 60E15, 62E15
- DOI: https://doi.org/10.1090/tran/8748
- MathSciNet review: 4531664