Scheepers’ conjecture and the Scheepers diagram
HTML articles powered by AMS MathViewer
- by Yinhe Peng;
- Trans. Amer. Math. Soc. 376 (2023), 1199-1229
- DOI: https://doi.org/10.1090/tran/8787
- Published electronically: November 16, 2022
- HTML | PDF | Request permission
Abstract:
Inductively approaching subsets by almost finite sets, we refute Scheepers’ conjecture under CH. More precisely, we prove the following.
- Assuming CH, there is a subset of reals $X$ such that $C_p(X)$ has property ($\alpha _2$) and $X$ does not satisfy $S_1(\Gamma , \Gamma )$.
Applying the idea of approaching subsets by almost finite sets and using an analogous approaching, we complete the Scheepers Diagram.
- $U_{fin}(\Gamma , \Gamma )$ implies $S_{fin}(\Gamma , \Omega )$.
- $U_{fin}(\Gamma , \Omega )$ does not imply $S_{fin}(\Gamma , \Omega )$. More precisely, assuming CH, there is a subset of reals $X$ satisfying $U_{fin}(\Gamma , \Omega )$ such that $X$ does not satisfy $S_{fin}(\Gamma , \Omega )$.
These results solve three longstanding and major problems in selection principles.
References
- A. V. Arkhangel’skii, The frequency spectrum of a topological space and the classification of spaces, Soviet Math. Dok. 13 (1972), 1185–1189.
- A. V. Arkhangel’skii, On some topological spaces that occur in functional analysis, Russian Math. Surveys 31 (1976), no. 5, 14–30, Translated from the Russian.
- A. V. Arkhangel’skii, Topological function spaces, Kluwer Academic Publishers, 1992.
- Maddalena Bonanzinga and Mikhail Matveev, Dowker-type example and Arhangelskii’s $\alpha _2$-property, Topology Appl. 160 (2013), no. 18, 2351–2355. MR 3120649, DOI 10.1016/j.topol.2013.07.029
- Zuzana Bukovská, Thin sets in trigonometrical series and quasinormal convergence, Math. Slovaca 40 (1990), no. 1, 53–62 (English, with Russian summary). MR 1094972
- Lev Bukovský and Jozef Haleš, QN-spaces, wQN-spaces and covering properties, Topology Appl. 154 (2007), no. 4, 848–858. MR 2294632, DOI 10.1016/j.topol.2006.09.008
- Alan Dow, Two classes of Fréchet-Urysohn spaces, Proc. Amer. Math. Soc. 108 (1990), no. 1, 241–247. MR 975638, DOI 10.1090/S0002-9939-1990-0975638-7
- D. H. Fremlin, SSP and wQN, Manuscript.
- Fred Galvin and Arnold W. Miller, $\gamma$-sets and other singular sets of real numbers, Topology Appl. 17 (1984), no. 2, 145–155. MR 738943, DOI 10.1016/0166-8641(84)90038-5
- J. Gerlits and Zs. Nagy, Some properties of $C(X)$. I, Topology Appl. 14 (1982), no. 2, 151–161. MR 667661, DOI 10.1016/0166-8641(82)90065-7
- Jozef Haleš, On Scheepers’ conjecture, Acta Univ. Carolin. Math. Phys. 46 (2005), no. 2, 27–31. MR 2194041
- Witold Hurewicz, Über eine Verallgemeinerung des Borelschen Theorems, Math. Z. 24 (1926), no. 1, 401–421 (German). MR 1544773, DOI 10.1007/BF01216792
- Winfried Just, Arnold W. Miller, Marion Scheepers, and Paul J. Szeptycki, The combinatorics of open covers. II, Topology Appl. 73 (1996), no. 3, 241–266. MR 1419798, DOI 10.1016/S0166-8641(96)00075-2
- Arnold W. Miller, Boaz Tsaban, and Lyubomyr Zdomskyy, Selective covering properties of product spaces, II: $\gamma$ spaces, Trans. Amer. Math. Soc. 368 (2016), no. 4, 2865–2889. MR 3449260, DOI 10.1090/tran/6581
- Yinhe Peng and Stevo Todorcevic, Powers of countable Fréchet spaces, Fund. Math. 245 (2019), no. 1, 39–54. MR 3901890, DOI 10.4064/fm556-4-2018
- E. G. Pytkeev, The tightness of spaces of continuous functions, Russian Math. Surveys 37: 1 (1982), pp. 176-177. (Translated from the Russian.)
- Masami Sakai, The sequence selection properties of $C_p(X)$, Topology Appl. 154 (2007), no. 3, 552–560. MR 2280899, DOI 10.1016/j.topol.2006.07.008
- Masami Sakai and Marion Scheepers, The combinatorics of open covers, Recent progress in general topology. III, Atlantis Press, Paris, 2014, pp. 751–799. MR 3205498, DOI 10.2991/978-94-6239-024-9_{1}8
- Marion Scheepers, Combinatorics of open covers. I. Ramsey theory, Topology Appl. 69 (1996), no. 1, 31–62. MR 1378387, DOI 10.1016/0166-8641(95)00067-4
- Marion Scheepers, $C_p(X)$ and Arhangel′skiĭ’s $\alpha _i$-spaces, Topology Appl. 89 (1998), no. 3, 265–275. MR 1645184, DOI 10.1016/S0166-8641(97)00218-6
- Marion Scheepers, Sequential convergence in $C_p(X)$ and a covering property, East-West J. Math. 1 (1999), no. 2, 207–214. MR 1727383
Bibliographic Information
- Yinhe Peng
- Affiliation: Academy of Mathematics and Systems Science, Chinese Academy of Sciences, East Zhong Guan Cun Road No. 55, Beijing, China
- MR Author ID: 1070206
- Email: pengyinhe@amss.ac.cn
- Received by editor(s): October 21, 2021
- Received by editor(s) in revised form: November 29, 2021, June 7, 2022, and June 21, 2022
- Published electronically: November 16, 2022
- Additional Notes: The author was partially supported by NSFC No. 11901562 and a program of the Chinese Academy of Sciences.
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 1199-1229
- MSC (2020): Primary 54D20, 03E05
- DOI: https://doi.org/10.1090/tran/8787
- MathSciNet review: 4531673