Entropy formula for systems with inducing schemes
HTML articles powered by AMS MathViewer
- by José F. Alves and David Mesquita;
- Trans. Amer. Math. Soc. 376 (2023), 1263-1298
- DOI: https://doi.org/10.1090/tran/8808
- Published electronically: December 1, 2022
- HTML | PDF | Request permission
Abstract:
We obtain entropy formulas for Sinai–Ruelle–Bowen (SRB) measures with finite entropy given by inducing schemes. In the first part of the work, we obtain Pesin entropy formula for the class of noninvertible systems whose SRB measures are given by Gibbs-Markov induced maps. In the second part, we obtain Pesin entropy formula for invertible maps whose SRB measures are given by Young sets, taking into account a classical compression technique along the stable direction that allows a reduction of the return map associated with a Young set to a Gibbs-Markov map. In both cases, we give applications of our main results to several classes of dynamical systems with singular sets, where the classical results by Ruelle and Pesin cannot be applied. We also present examples of systems with SRB measures given by inducing schemes for which Ruelle inequality does not hold.References
- L. M. Abramov and V. A. Rohlin, Entropy of a skew product of mappings with invariant measure, Vestnik Leningrad. Univ. 17 (1962), no. 7, 5–13 (Russian, with English summary). MR 140660
- José F. Alves, Strong statistical stability of non-uniformly expanding maps, Nonlinearity 17 (2004), no. 4, 1193–1215. MR 2069701, DOI 10.1088/0951-7715/17/4/004
- José F. Alves, Nonuniformly hyperbolic attractors—geometric and probabilistic aspects, Springer Monographs in Mathematics, Springer, Cham, [2020] ©2020. MR 4226156, DOI 10.1007/978-3-030-62814-7
- José F. Alves and Vítor Araújo, Hyperbolic times: frequency versus integrability, Ergodic Theory Dynam. Systems 24 (2004), no. 2, 329–346. MR 2054046, DOI 10.1017/S0143385703000555
- José F. Alves, Maria Carvalho, and Jorge Milhazes Freitas, Statistical stability and continuity of SRB entropy for systems with Gibbs-Markov structures, Comm. Math. Phys. 296 (2010), no. 3, 739–767. MR 2628821, DOI 10.1007/s00220-010-1027-6
- José F. Alves, Krerley Oliveira, and Ali Tahzibi, On the continuity of the SRB entropy for endomorphisms, J. Stat. Phys. 123 (2006), no. 4, 763–785. MR 2255078, DOI 10.1007/s10955-006-9059-1
- José F. Alves and Antonio Pumariño, Entropy formula and continuity of entropy for piecewise expanding maps, Ann. Inst. H. Poincaré C Anal. Non Linéaire 38 (2021), no. 1, 91–108. MR 4200478, DOI 10.1016/j.anihpc.2020.06.003
- José F. Alves and Mohammad Soufi, Statistical stability and limit laws for Rovella maps, Nonlinearity 25 (2012), no. 12, 3527–3552. MR 2997706, DOI 10.1088/0951-7715/25/12/3527
- V. Araújo and M. J. Pacifico, Three-dimensional flows, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, vol. 53, Springer, Heidelberg, 2010.
- Wael Bahsoun, Christopher Bose, and Yuejiao Duan, Decay of correlation for random intermittent maps, Nonlinearity 27 (2014), no. 7, 1543–1554. MR 3225871, DOI 10.1088/0951-7715/27/7/1543
- Wael Bahsoun, Christopher Bose, and Anthony Quas, Deterministic representation for position dependent random maps, Discrete Contin. Dyn. Syst. 22 (2008), no. 3, 529–540. MR 2429852, DOI 10.3934/dcds.2008.22.529
- Viviane Baladi and Mark F. Demers, On the measure of maximal entropy for finite horizon Sinai billiard maps, J. Amer. Math. Soc. 33 (2020), no. 2, 381–449. MR 4073865, DOI 10.1090/jams/939
- Alejo Barrio Blaya and Víctor Jiménez López, On the relations between positive Lyapunov exponents, positive entropy, and sensitivity for interval maps, Discrete Contin. Dyn. Syst. 32 (2012), no. 2, 433–466. MR 2837068, DOI 10.3934/dcds.2012.32.433
- Mário Bessa, César M. Silva, and Helder Vilarinho, Stretching generic Pesin’s entropy formula, J. Stat. Phys. 173 (2018), no. 5, 1523–1546. MR 3878352, DOI 10.1007/s10955-018-2163-1
- Thomas Bogenschütz and Hans Crauel, The Abramov-Rokhlin formula, Ergodic theory and related topics, III (Güstrow, 1990) Lecture Notes in Math., vol. 1514, Springer, Berlin, 1992, pp. 32–35. MR 1179170, DOI 10.1007/BFb0097526
- Jérôme Buzzi, Markov extensions for multi-dimensional dynamical systems, Israel J. Math. 112 (1999), 357–380. MR 1714974, DOI 10.1007/BF02773488
- N. I. Chernov, Topological entropy and periodic points of two-dimensional hyperbolic billiards, Funktsional. Anal. i Prilozhen. 25 (1991), no. 1, 50–57 (Russian); English transl., Funct. Anal. Appl. 25 (1991), no. 1, 39–45. MR 1113121, DOI 10.1007/BF01090675
- N. Chernov, Decay of correlations and dispersing billiards, J. Statist. Phys. 94 (1999), no. 3-4, 513–556. MR 1675363, DOI 10.1023/A:1004581304939
- N. Chernov, Statistical properties of piecewise smooth hyperbolic systems in high dimensions, Discrete Contin. Dynam. Systems 5 (1999), no. 2, 425–448. MR 1665752, DOI 10.3934/dcds.1999.5.425
- Nikolai Chernov and Roberto Markarian, Chaotic billiards, Mathematical Surveys and Monographs, vol. 127, American Mathematical Society, Providence, RI, 2006. MR 2229799, DOI 10.1090/surv/127
- N. Chernov and H.-K. Zhang, Billiards with polynomial mixing rates, Nonlinearity 18 (2005), no. 4, 1527–1553. MR 2150341, DOI 10.1088/0951-7715/18/4/006
- N. Chernov and H.-K. Zhang, A family of chaotic billiards with variable mixing rates, Stoch. Dyn. 5 (2005), no. 4, 535–553. MR 2185504, DOI 10.1142/S0219493705001572
- P. Collet and Y. Levy, Ergodic properties of the Lozi mappings, Comm. Math. Phys. 93 (1984), no. 4, 461–481. MR 763754, DOI 10.1007/BF01212290
- Giampaolo Cristadoro, Nicolai Haydn, Philippe Marie, and Sandro Vaienti, Statistical properties of intermittent maps with unbounded derivative, Nonlinearity 23 (2010), no. 5, 1071–1095. MR 2630091, DOI 10.1088/0951-7715/23/5/003
- Mark F. Demers, Paul Wright, and Lai-Sang Young, Entropy, Lyapunov exponents and escape rates in open systems, Ergodic Theory Dynam. Systems 32 (2012), no. 4, 1270–1301. MR 2955314, DOI 10.1017/S0143385711000344
- Manfred Denker, Gerhard Keller, and Mariusz Urbański, On the uniqueness of equilibrium states for piecewise monotone mappings, Studia Math. 97 (1990), no. 1, 27–36. MR 1074766, DOI 10.4064/sm-97-1-27-36
- K. Díaz-Ordaz, M. P. Holland, and S. Luzzatto, Statistical properties of one-dimensional maps with critical points and singularities, Stoch. Dyn. 6 (2006), no. 4, 423–458. MR 2285510, DOI 10.1142/S0219493706001852
- Peyman Eslami, Inducing schemes for multi-dimensional piecewise expanding maps, Discrete Contin. Dyn. Syst. 42 (2022), no. 1, 353–368. MR 4349790, DOI 10.3934/dcds.2021120
- John Guckenheimer and R. F. Williams, Structural stability of Lorenz attractors, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 59–72. MR 556582, DOI 10.1007/BF02684769
- Franz Hofbauer, An inequality for the Ljapunov exponent of an ergodic invariant measure for a piecewise monotonic map of the interval, Lyapunov exponents (Oberwolfach, 1990) Lecture Notes in Math., vol. 1486, Springer, Berlin, 1991, pp. 227–231. MR 1178961, DOI 10.1007/BFb0086672
- Anatole Katok, Jean-Marie Strelcyn, F. Ledrappier, and F. Przytycki, Invariant manifolds, entropy and billiards; smooth maps with singularities, Lecture Notes in Mathematics, vol. 1222, Springer-Verlag, Berlin, 1986. MR 872698, DOI 10.1007/BFb0099031
- Gerhard Keller, Lifting measures to Markov extensions, Monatsh. Math. 108 (1989), no. 2-3, 183–200. MR 1026617, DOI 10.1007/BF01308670
- A. N. Kolmogorov, A new metric invariant of transient dynamical systems and automorphisms in Lebesgue spaces, Dokl. Akad. Nauk SSSR (N.S.) 119 (1958), 861–864 (Russian). MR 103254
- François Ledrappier, Some properties of absolutely continuous invariant measures on an interval, Ergodic Theory Dynam. Systems 1 (1981), no. 1, 77–93. MR 627788, DOI 10.1017/s0143385700001176
- François Ledrappier and Jean-Marie Strelcyn, A proof of the estimation from below in Pesin’s entropy formula, Ergodic Theory Dynam. Systems 2 (1982), no. 2, 203–219 (1983). MR 693976, DOI 10.1017/S0143385700001528
- François Ledrappier and Peter Walters, A relativised variational principle for continuous transformations, J. London Math. Soc. (2) 16 (1977), no. 3, 568–576. MR 476995, DOI 10.1112/jlms/s2-16.3.568
- F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin’s entropy formula, Ann. of Math. (2) 122 (1985), no. 3, 509–539. MR 819556, DOI 10.2307/1971328
- Gang Liao, Regularity of SRB entropy for geometric Lorenz attractors, J. Stat. Phys. 174 (2019), no. 3, 536–547. MR 3911775, DOI 10.1007/s10955-018-2167-x
- Gang Liao, Lower bound in Pesin formula of $C^1$ interval maps, Nonlinearity 35 (2022), no. 3, 1249–1260. MR 4374002, DOI 10.1088/1361-6544/ac4b3d
- Pei-Dong Liu, Pesin’s entropy formula for endomorphisms, Nagoya Math. J. 150 (1998), 197–209. MR 1633167, DOI 10.1017/S0027763000025113
- Pei-Dong Liu and Min Qian, Smooth ergodic theory of random dynamical systems, Lecture Notes in Mathematics, vol. 1606, Springer-Verlag, Berlin, 1995. MR 1369243, DOI 10.1007/BFb0094308
- Carlangelo Liverani, Benoît Saussol, and Sandro Vaienti, A probabilistic approach to intermittency, Ergodic Theory Dynam. Systems 19 (1999), no. 3, 671–685. MR 1695915, DOI 10.1017/S0143385799133856
- Ricardo Mañé, A proof of Pesin’s formula, Ergodic Theory Dynam. Systems 1 (1981), no. 1, 95–102. MR 627789, DOI 10.1017/s0143385700001188
- R. J. Metzger, Stochastic stability for contracting Lorenz maps and flows, Comm. Math. Phys. 212 (2000), no. 2, 277–296. MR 1772247, DOI 10.1007/s002200000220
- MichałMisiurewicz, Strange attractors for the Lozi mappings, Nonlinear dynamics (Internat. Conf., New York, 1979) Ann. New York Acad. Sci., vol. 357, New York Acad. Sci., New York, 1980, pp. 348–358. MR 612833
- William Parry, Entropy and generators in ergodic theory, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 262464
- Ja. B. Pesin, Characteristic Ljapunov exponents, and smooth ergodic theory, Uspehi Mat. Nauk 32 (1977), no. 4(196), 55–112, 287 (Russian). MR 466791
- Min Qian, Jian-Sheng Xie, and Shu Zhu, Smooth ergodic theory for endomorphisms, Lecture Notes in Mathematics, vol. 1978, Springer-Verlag, Berlin, 2009. MR 2542186, DOI 10.1007/978-3-642-01954-8
- V. A. Rohlin, Exact endomorphism of a Lebesgue space, Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 14 (1964), 443–474 (Hungarian). MR 228654
- V. A. Rohlin, Lectures on the entropy theory of transformations with invariant measure, Uspehi Mat. Nauk 22 (1967), no. 5(137), 3–56 (Russian). MR 217258
- Alvaro Rovella, The dynamics of perturbations of the contracting Lorenz attractor, Bol. Soc. Brasil. Mat. (N.S.) 24 (1993), no. 2, 233–259. MR 1254985, DOI 10.1007/BF01237679
- David Ruelle, An inequality for the entropy of differentiable maps, Bol. Soc. Brasil. Mat. 9 (1978), no. 1, 83–87. MR 516310, DOI 10.1007/BF02584795
- Marek Rychlik, Mesures invariantes et principe variationnel pour les applications de Lozi, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), no. 1, 19–22 (French, with English summary). MR 691018
- C. E. Shannon, A mathematical theory of communication, Bell System Tech. J. 27 (1948), 379–423, 623–656. MR 26286, DOI 10.1002/j.1538-7305.1948.tb01338.x
- Ja. G. Sinaĭ, Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards, Uspehi Mat. Nauk 25 (1970), no. 2(152), 141–192 (Russian). MR 274721
- Luchezar Stojanov, An estimate from above of the number of periodic orbits for semi-dispersed billiards, Comm. Math. Phys. 124 (1989), no. 2, 217–227. MR 1012865, DOI 10.1007/BF01219195
- Viana, M., Stochastic dynamics of deterministic systems. Publicações Matemáticas do IMPA. [IMPA Mathematical Publications]. Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 1997. 22${^{{}}\textrm {{o}}}$ Colóquio Brasileiro de Matemática. [22th Brazilian Mathematics Colloquium].
- Marcelo Viana and Krerley Oliveira, Foundations of ergodic theory, Cambridge Studies in Advanced Mathematics, vol. 151, Cambridge University Press, Cambridge, 2016. MR 3558990, DOI 10.1017/CBO9781316422601
- Lai-Sang Young, Bowen-Ruelle measures for certain piecewise hyperbolic maps, Trans. Amer. Math. Soc. 287 (1985), no. 1, 41–48. MR 766205, DOI 10.1090/S0002-9947-1985-0766205-1
- Lai-Sang Young, Statistical properties of dynamical systems with some hyperbolicity, Ann. of Math. (2) 147 (1998), no. 3, 585–650. MR 1637655, DOI 10.2307/120960
- Lai-Sang Young, Recurrence times and rates of mixing, Israel J. Math. 110 (1999), 153–188. MR 1750438, DOI 10.1007/BF02808180
- Lai-Sang Young, Entropy in dynamical systems, Entropy, Princeton Ser. Appl. Math., Princeton Univ. Press, Princeton, NJ, 2003, pp. 313–327. MR 2035829
Bibliographic Information
- José F. Alves
- Affiliation: Centro de Matemática da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
- ORCID: 0000-0001-9241-5198
- Email: jfalves@fc.up.pt
- David Mesquita
- Affiliation: Centro de Matemática da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
- Received by editor(s): December 7, 2021
- Received by editor(s) in revised form: August 1, 2022
- Published electronically: December 1, 2022
- Additional Notes: The authors were partially supported by CMUP (UID/MAT/00144/2019), PD/BD/128062/2016 and PTDC/MAT-PUR/28177/2017, which were funded by FCT (Portugal) with national (MEC) and European structural funds through the program FEDER, under the partnership agreement PT2020. Data sharing not applicable to this article as no datasets were generated or analysed during the current study
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 1263-1298
- MSC (2020): Primary 37A05, 37A35, 37C05, 37C83
- DOI: https://doi.org/10.1090/tran/8808
- MathSciNet review: 4531675