The Lanford–Ruelle theorem for actions of sofic groups
HTML articles powered by AMS MathViewer
- by Sebastián Barbieri and Tom Meyerovitch;
- Trans. Amer. Math. Soc. 376 (2023), 1299-1342
- DOI: https://doi.org/10.1090/tran/8810
- Published electronically: November 16, 2022
- HTML | PDF | Request permission
Abstract:
Let $\Gamma$ be a sofic group, $\Sigma$ be a sofic approximation sequence of $\Gamma$ and $X$ be a $\Gamma$-subshift with non-negative sofic topological entropy with respect to $\Sigma$. Further assume that $X$ is a shift of finite type, or more generally, that $X$ satisfies the topological Markov property. We show that for any sufficiently regular potential $f \colon X \to \mathbb {R}$, any translation-invariant Borel probability measure on $X$ which maximizes the measure-theoretic sofic pressure of $f$ with respect to $\Sigma$ is a Gibbs state with respect to $f$. This extends a classical theorem of Lanford and Ruelle, as well as previous generalizations of Moulin Ollagnier, Pinchon, Tempelman and others, to the case where the group is sofic.
As applications of our main result we present a criterion for uniqueness of an equilibrium measure, as well as sufficient conditions for having that the equilibrium states do not depend upon the chosen sofic approximation sequence. We also prove that for any group-shift over a sofic group, the Haar measure is the unique measure of maximal sofic entropy for every sofic approximation sequence, as long as the homoclinic group is dense.
On the expository side, we present a short proof of Chung’s variational principle for sofic topological pressure.
References
- Dylan Airey, Lewis Bowen, and Yuqing Frank Lin, A topological dynamical system with two different positive sofic entropies, Trans. Amer. Math. Soc. Ser. B 9 (2022), 35–98. MR 4383230, DOI 10.1090/btran/101
- A. Alpeev, The entropy of Gibbs measures on sofic groups, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 436 (2015), no. Teoriya Predstavleniĭ, Dinamicheskie Sistemy, Kombinatornye Metody. XXV, 34–48; English transl., J. Math. Sci. (N.Y.) 215 (2016), no. 6, 649–658. MR 3498184, DOI 10.1007/s10958-016-2871-5
- Tim Austin, Additivity properties of sofic entropy and measures on model spaces, Forum Math. Sigma 4 (2016), Paper No. e25, 79. MR 3542515, DOI 10.1017/fms.2016.18
- Tim Austin and Moumanti Podder, Gibbs measures over locally tree-like graphs and percolative entropy over infinite regular trees, J. Stat. Phys. 170 (2018), no. 5, 932–951. MR 3767001, DOI 10.1007/s10955-018-1959-3
- Sebastián Barbieri, Felipe García-Ramos, and Hanfeng Li, Markovian properties of continuous group actions: algebraic actions, entropy and the homoclinic group, Adv. Math. 397 (2022), Paper No. 108196, 52. MR 4366230, DOI 10.1016/j.aim.2022.108196
- Sebastián Barbieri, Ricardo Gómez, Brian Marcus, Tom Meyerovitch, and Siamak Taati, Gibbsian representations of continuous specifications: the theorems of Kozlov and Sullivan revisited, Comm. Math. Phys. 382 (2021), no. 2, 1111–1164. MR 4227169, DOI 10.1007/s00220-021-03979-2
- Sebastián Barbieri, Ricardo Gómez, Brian Marcus, and Siamak Taati, Equivalence of relative Gibbs and relative equilibrium measures for actions of countable amenable groups, Nonlinearity 33 (2020), no. 5, 2409–2454. MR 4105363, DOI 10.1088/1361-6544/ab6a75
- Luísa Borsato and Sophie MacDonald, Conformal measures and the Dobrušin-Lanford-Ruelle equations, Proc. Amer. Math. Soc. 149 (2021), no. 10, 4355–4369. MR 4305986, DOI 10.1090/proc/15545
- Lewis Bowen, Measure conjugacy invariants for actions of countable sofic groups, J. Amer. Math. Soc. 23 (2010), no. 1, 217–245. MR 2552252, DOI 10.1090/S0894-0347-09-00637-7
- Lewis Bowen, Examples in the entropy theory of countable group actions, Ergodic Theory Dynam. Systems 40 (2020), no. 10, 2593–2680. MR 4138907, DOI 10.1017/etds.2019.18
- Robert Burton and Jeffrey E. Steif, Non-uniqueness of measures of maximal entropy for subshifts of finite type, Ergodic Theory Dynam. Systems 14 (1994), no. 2, 213–235. MR 1279469, DOI 10.1017/S0143385700007859
- Tullio Ceccherini-Silberstein, M. Coornaert, and H. Li. Expansive actions with specification of sofic groups, strong topological markov property, and surjunctivity. arXiv:2107.12047, 2021.
- Nishant Chandgotia, Markov random fields and measures with nearest neighbour Gibbs potential, Master’s Thesis, University of British Columbia, 2011.
- Nishant Chandgotia, Guangyue Han, Brian Marcus, Tom Meyerovitch, and Ronnie Pavlov, One-dimensional Markov random fields, Markov chains and topological Markov fields, Proc. Amer. Math. Soc. 142 (2014), no. 1, 227–242. MR 3119198, DOI 10.1090/S0002-9939-2013-11741-7
- Nishant Chandgotia and Tom Meyerovitch, Markov random fields, Markov cocycles and the 3-colored chessboard, Israel J. Math. 215 (2016), no. 2, 909–964. MR 3552299, DOI 10.1007/s11856-016-1398-2
- Nhan-Phu Chung, Topological pressure and the variational principle for actions of sofic groups, Ergodic Theory Dynam. Systems 33 (2013), no. 5, 1363–1390. MR 3103087, DOI 10.1017/S0143385712000429
- Nhan-Phu Chung and Guohua Zhang, Weak expansiveness for actions of sofic groups, J. Funct. Anal. 268 (2015), no. 11, 3534–3565. MR 3336733, DOI 10.1016/j.jfa.2014.12.013
- Manfred Denker and Mariusz Urbański, On the existence of conformal measures, Trans. Amer. Math. Soc. 328 (1991), no. 2, 563–587. MR 1014246, DOI 10.1090/S0002-9947-1991-1014246-4
- R. L. Dobrušin, Description of a random field by means of conditional probabilities and conditions for its regularity, Teor. Verojatnost. i Primenen. 13 (1968), 201–229 (Russian, with English summary). MR 231434
- Jacob Feldman and Calvin C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras. I, Trans. Amer. Math. Soc. 234 (1977), no. 2, 289–324. MR 578656, DOI 10.1090/S0002-9947-1977-0578656-4
- R. I. Grigorchuk and A. M. Stëpin, Gibbs states on countable groups, Teor. Veroyatnost. i Primenen. 29 (1984), no. 2, 351–354 (Russian). MR 749922
- M. Gromov, Endomorphisms of symbolic algebraic varieties, J. Eur. Math. Soc. (JEMS) 1 (1999), no. 2, 109–197. MR 1694588, DOI 10.1007/PL00011162
- Gerhard Keller, Equilibrium states in ergodic theory, London Mathematical Society Student Texts, vol. 42, Cambridge University Press, Cambridge, 1998. MR 1618769, DOI 10.1017/CBO9781107359987
- David Kerr and Hanfeng Li, Entropy and the variational principle for actions of sofic groups, Invent. Math. 186 (2011), no. 3, 501–558. MR 2854085, DOI 10.1007/s00222-011-0324-9
- Oscar E. Lanford III and Derek W. Robinson, Statistical mechanics of quantum spin systems. III, Comm. Math. Phys. 9 (1968), 327–338. MR 234696, DOI 10.1007/BF01654286
- O. E. Lanford III and D. Ruelle, Observables at infinity and states with short range correlations in statistical mechanics, Comm. Math. Phys. 13 (1969), 194–215. MR 256687, DOI 10.1007/BF01645487
- Tom Meyerovitch, Gibbs and equilibrium measures for some families of subshifts, Ergodic Theory Dynam. Systems 33 (2013), no. 3, 934–953. MR 3062907, DOI 10.1017/S0143385712000053
- Tom Meyerovitch, Pseudo-orbit tracing and algebraic actions of countable amenable groups, Ergodic Theory Dynam. Systems 39 (2019), no. 9, 2570–2591. MR 3989129, DOI 10.1017/etds.2017.126
- MichałMisiurewicz, A short proof of the variational principle for a $\textbf {Z}_{+}^{N}$ action on a compact space, International Conference on Dynamical Systems in Mathematical Physics (Rennes, 1975) Astérisque, No. 40, Soc. Math. France, Paris, 1976, pp. 147–157. MR 444904
- Andrea Montanari, Elchanan Mossel, and Allan Sly, The weak limit of Ising models on locally tree-like graphs, Probab. Theory Related Fields 152 (2012), no. 1-2, 31–51. MR 2875752, DOI 10.1007/s00440-010-0315-6
- Jean Moulin Ollagnier, Ergodic theory and statistical mechanics, Lecture Notes in Mathematics, vol. 1115, Springer-Verlag, Berlin, 1985. MR 781932, DOI 10.1007/BFb0101575
- Jean Moulin Ollagnier and Didier Pinchon, Mesures de Gibbs invariantes et mesures d’équilibre, Z. Wahrsch. Verw. Gebiete 55 (1981), no. 1, 11–23 (French, with English summary). MR 606002, DOI 10.1007/BF01013457
- Jean Moulin Ollagnier and Didier Pinchon, The variational principle, Studia Math. 72 (1982), no. 2, 151–159. MR 665415, DOI 10.4064/sm-72-2-151-159
- Karl Petersen and Klaus Schmidt, Symmetric Gibbs measures, Trans. Amer. Math. Soc. 349 (1997), no. 7, 2775–2811. MR 1422906, DOI 10.1090/S0002-9947-97-01934-X
- Ian F. Putnam, Cantor minimal systems, University Lecture Series, vol. 70, American Mathematical Society, Providence, RI, 2018. MR 3791491, DOI 10.1090/ulect/070
- David Ruelle, Statistical mechanics on a compact set with $Z^{v}$ action satisfying expansiveness and specification, Trans. Amer. Math. Soc. 187 (1973), 237–251. MR 417391, DOI 10.1090/S0002-9947-1973-0417391-6
- David Ruelle, Thermodynamic formalism, 2nd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2004. The mathematical structures of equilibrium statistical mechanics. MR 2129258, DOI 10.1017/CBO9780511617546
- V. Salo, When are group shifts of finite type?, arXiv:1807.01951, 2018.
- Brandon Seward, Krieger’s finite generator theorem for actions of countable groups I, Invent. Math. 215 (2019), no. 1, 265–310. MR 3904452, DOI 10.1007/s00222-018-0826-9
- Brandon Seward, Krieger’s finite generator theorem for actions of countable groups II, J. Mod. Dyn. 15 (2019), 1–39. MR 3959054, DOI 10.3934/jmd.2019012
- C. Shriver, Free energy, Gibbs measures, and Glauber dynamics for nearest-neighbor interactions on trees, arXiv:2011.00653, 2020.
- Allan Sly, Computational transition at the uniqueness threshold, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science—FOCS 2010, IEEE Computer Soc., Los Alamitos, CA, 2010, pp. 287–296. MR 3025202
- A. M. Stepin and A. T. Tagi-Zade, Variational characterization of topological pressure of the amenable groups of transformations, Dokl. Akad. Nauk SSSR 254 (1980), no. 3, 545–549 (Russian). MR 590147
- A. A. Tempelman, Specific characteristics and variational principle for homogeneous random fields, Z. Wahrsch. Verw. Gebiete 65 (1984), no. 3, 341–365. MR 731226, DOI 10.1007/BF00533741
- J. van den Berg, A uniqueness condition for Gibbs measures, with application to the $2$-dimensional Ising antiferromagnet, Comm. Math. Phys. 152 (1993), no. 1, 161–166. MR 1207673, DOI 10.1007/BF02097061
Bibliographic Information
- Sebastián Barbieri
- Affiliation: Departamento de Matemática y ciencia de la computación, Universidad de Santiago de Chile, Santiago, Chile
- ORCID: 0000-0001-9567-2085
- Email: sebastian.barbieri@usach.cl
- Tom Meyerovitch
- Affiliation: Department of Mathematics, Ben-Gurion University of the Negev, Be’er Sheva, Israel
- MR Author ID: 824249
- Email: mtom@bgu.ac.il
- Received by editor(s): January 21, 2022
- Received by editor(s) in revised form: January 24, 2022, July 1, 2022, and August 2, 2022
- Published electronically: November 16, 2022
- Additional Notes: The first author was supported by the FONDECYT grant 11200037 and the second author was supported by ISF grant 1058/18.
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 1299-1342
- MSC (2020): Primary 37B10, 37D35, 82B20
- DOI: https://doi.org/10.1090/tran/8810
- MathSciNet review: 4531676