Cubic fourfolds with an involution
HTML articles powered by AMS MathViewer
- by Lisa Marquand;
- Trans. Amer. Math. Soc. 376 (2023), 1373-1406
- DOI: https://doi.org/10.1090/tran/8811
- Published electronically: December 1, 2022
- HTML | PDF | Request permission
Abstract:
There are three types of involutions on a cubic fourfold; two of anti-symplectic type, and one symplectic. Here we show that cubics with involutions exhibit the full range of behaviour in relation to rationality conjectures. Namely, we show a general cubic fourfold with a symplectic involution has no associated $K3$ surface and is conjecturely irrational. In contrast, a cubic fourfold with a particular anti-symplectic involution has an associated $K3$, and is in fact rational. We show such a cubic is contained in the intersection of all non-empty Hassett divisors; we call such a cubic Hassett maximal. We study the algebraic and transcendental lattices for cubics with an involution both lattice theoretically and geometrically.References
- Asher Auel, Marcello Bernardara, Michele Bolognesi, and Anthony Várilly-Alvarado, Cubic fourfolds containing a plane and a quintic del Pezzo surface, Algebr. Geom. 1 (2014), no. 2, 181–193. MR 3238111, DOI 10.14231/AG-2014-010
- Nicolas Addington and Richard Thomas, Hodge theory and derived categories of cubic fourfolds, Duke Math. J. 163 (2014), no. 10, 1885–1927. MR 3229044, DOI 10.1215/00127094-2738639
- Asher Auel, Brill-Noether special cubic fourfolds of discriminant 14, Facets of algebraic geometry. Vol. I, London Math. Soc. Lecture Note Ser., vol. 472, Cambridge Univ. Press, Cambridge, 2022, pp. 29–53. MR 4381896
- Arnaud Beauville and Ron Donagi, La variété des droites d’une hypersurface cubique de dimension $4$, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), no. 14, 703–706 (French, with English summary). MR 818549
- Arnaud Beauville, Determinantal hypersurfaces, Michigan Math. J. 48 (2000), 39–64. Dedicated to William Fulton on the occasion of his 60th birthday. MR 1786479, DOI 10.1307/mmj/1030132707
- Anita Buckley and Tomaž Košir, Determinantal representations of smooth cubic surfaces, Geom. Dedicata 125 (2007), 115–140. MR 2322544, DOI 10.1007/s10711-007-9144-x
- Arend Bayer, Martí Lahoz, Emanuele Macrì, Howard Nuer, Alexander Perry, and Paolo Stellari, Stability conditions in families, Publ. Math. Inst. Hautes Études Sci. 133 (2021), 157–325. MR 4292740, DOI 10.1007/s10240-021-00124-6
- Emma Brakkee, Moduli spaces of twisted K3 surfaces and cubic fourfolds, Math. Ann. 377 (2020), no. 3-4, 1453–1479. MR 4126898, DOI 10.1007/s00208-020-01990-x
- Michele Bolognesi, Francesco Russo, and Giovanni Staglianò, Some loci of rational cubic fourfolds, Math. Ann. 373 (2019), no. 1-2, 165–190. MR 3968870, DOI 10.1007/s00208-018-1707-7
- Nils Bruin and Emre Can Sertöz, Prym varieties of genus four curves, Trans. Amer. Math. Soc. 373 (2020), no. 1, 149–183. MR 4042871, DOI 10.1090/tran/7902
- Chiara Camere, Symplectic involutions of holomorphic symplectic four-folds, Bull. Lond. Math. Soc. 44 (2012), no. 4, 687–702. MR 2967237, DOI 10.1112/blms/bdr133
- I. V. Dolgachev, Mirror symmetry for lattice polarized $K3$ surfaces, J. Math. Sci. 81 (1996), no. 3, 2599–2630. Algebraic geometry, 4. MR 1420220, DOI 10.1007/BF02362332
- Igor V. Dolgachev, Classical algebraic geometry, Cambridge University Press, Cambridge, 2012. A modern view. MR 2964027, DOI 10.1017/CBO9781139084437
- Lie Fu, Classification of polarized symplectic automorphisms of Fano varieties of cubic fourfolds, Glasg. Math. J. 58 (2016), no. 1, 17–37. MR 3426426, DOI 10.1017/S001708951500004X
- Víctor González-Aguilera and Alvaro Liendo, Automorphisms of prime order of smooth cubic $n$-folds, Arch. Math. (Basel) 97 (2011), no. 1, 25–37. MR 2820585, DOI 10.1007/s00013-011-0247-0
- Federica Galluzzi, Cubic fourfolds containing a plane and $K3$ surfaces of Picard rank two, Geom. Dedicata 186 (2017), 103–112. MR 3602887, DOI 10.1007/s10711-016-0181-1
- Brendan Edward Hassett, Special cubic hypersurfaces of dimension four, ProQuest LLC, Ann Arbor, MI, 1996. Thesis (Ph.D.)–Harvard University. MR 2694332
- Brendan Hassett, Some rational cubic fourfolds, J. Algebraic Geom. 8 (1999), no. 1, 103–114. MR 1658216
- Brendan Hassett, Special cubic fourfolds, Compositio Math. 120 (2000), no. 1, 1–23. MR 1738215, DOI 10.1023/A:1001706324425
- Brendan Hassett, Cubic fourfolds, K3 surfaces, and rationality questions, Rationality problems in algebraic geometry, Lecture Notes in Math., vol. 2172, Springer, Cham, 2016, pp. 29–66. MR 3618665
- Brendan Hassett and Yuri Tschinkel, Flops on holomorphic symplectic fourfolds and determinantal cubic hypersurfaces, J. Inst. Math. Jussieu 9 (2010), no. 1, 125–153. MR 2576800, DOI 10.1017/S1474748009000140
- Daniel Huybrechts, Generalized Calabi-Yau structures, $K3$ surfaces, and $B$-fields, Internat. J. Math. 16 (2005), no. 1, 13–36. MR 2115675, DOI 10.1142/S0129167X05002734
- Daniel Huybrechts, The global Torelli theorem: classical, derived, twisted, Algebraic geometry—Seattle 2005. Part 1, Proc. Sympos. Pure Math., vol. 80, Amer. Math. Soc., Providence, RI, 2009, pp. 235–258. MR 2483937, DOI 10.1090/pspum/080.1/2483937
- Daniel Huybrechts, The K3 category of a cubic fourfold, Compos. Math. 153 (2017), no. 3, 586–620. MR 3705236, DOI 10.1112/S0010437X16008137
- E. Izadi, A Prym construction for the cohomology of a cubic hypersurface, Proc. London Math. Soc. (3) 79 (1999), no. 3, 535–568. MR 1710164, DOI 10.1112/S0024611599012046
- A. Javanpeykar and D. Loughran, Complete intersections: moduli, Torelli, and good reduction, Math. Ann. 368 (2017), no. 3-4, 1191–1225. MR 3673652, DOI 10.1007/s00208-016-1455-5
- Ljudmila Kamenova, Giovanni Mongardi, and Alexei Oblomkov, Symplectic involutions of $K3^{[n]}$ type and Kummer $n$ type manifolds, Bull. Lond. Math. Soc. 54 (2022), no. 3, 894–909. MR 4453747, DOI 10.1112/blms.12594
- Shigeyuki Kond\B{o}, Niemeier lattices, Mathieu groups, and finite groups of symplectic automorphisms of $K3$ surfaces, Duke Math. J. 92 (1998), no. 3, 593–603. With an appendix by Shigeru Mukai. MR 1620514, DOI 10.1215/S0012-7094-98-09217-1
- Maxim Kontsevich and Yuri Tschinkel, Specialization of birational types, Invent. Math. 217 (2019), no. 2, 415–432. MR 3987175, DOI 10.1007/s00222-019-00870-9
- Alexander Kuznetsov, Derived categories of cubic fourfolds, Cohomological and geometric approaches to rationality problems, Progr. Math., vol. 282, Birkhäuser Boston, Boston, MA, 2010, pp. 219–243. MR 2605171, DOI 10.1007/978-0-8176-4934-0_{9}
- Alexander Kuznetsov, Derived categories view on rationality problems, Rationality problems in algebraic geometry, Lecture Notes in Math., vol. 2172, Springer, Cham, 2016, pp. 67–104. MR 3618666
- Radu Laza, The moduli space of cubic fourfolds, J. Algebraic Geom. 18 (2009), no. 3, 511–545. MR 2496456, DOI 10.1090/S1056-3911-08-00506-7
- Radu Laza, Maximally algebraic potentially irrational cubic fourfolds, Proc. Amer. Math. Soc. 149 (2021), no. 8, 3209–3220. MR 4273129, DOI 10.1090/proc/15430
- Christian Lehn, Manfred Lehn, Christoph Sorger, and Duco van Straten, Twisted cubics on cubic fourfolds, J. Reine Angew. Math. 731 (2017), 87–128. MR 3709061, DOI 10.1515/crelle-2014-0144
- Radu Laza, Gregory Pearlstein, and Zheng Zhang, On the moduli space of pairs consisting of a cubic threefold and a hyperplane, Adv. Math. 340 (2018), 684–722. MR 3886178, DOI 10.1016/j.aim.2018.10.017
- Radu Laza, Giulia Saccà, and Claire Voisin, A hyper-Kähler compactification of the intermediate Jacobian fibration associated with a cubic 4-fold, Acta Math. 218 (2017), no. 1, 55–135. MR 3710794, DOI 10.4310/ACTA.2017.v218.n1.a2
- Radu Laza and Zhiwei Zheng, Automorphisms and periods of cubic fourfolds, Math. Z. 300 (2022), no. 2, 1455–1507. MR 4363785, DOI 10.1007/s00209-021-02810-x
- Lisa Marquand, On symplectic birational involutions of manifolds of OG10 type, 2022.
- Hideyuki Matsumura and Paul Monsky, On the automorphisms of hypersurfaces, J. Math. Kyoto Univ. 3 (1963/64), 347–361. MR 168559, DOI 10.1215/kjm/1250524785
- Giovanni Mongardi, Towards a classification of symplectic automorphisms on manifolds of $K3^{[n]}$ type, Math. Z. 282 (2016), no. 3-4, 651–662. MR 3473636, DOI 10.1007/s00209-015-1557-x
- Shigeru Mukai, Finite groups of automorphisms of $K3$ surfaces and the Mathieu group, Invent. Math. 94 (1988), no. 1, 183–221. MR 958597, DOI 10.1007/BF01394352
- V. V. Nikulin, Finite groups of automorphisms of Kählerian $K3$ surfaces, Trudy Moskov. Mat. Obshch. 38 (1979), 75–137 (Russian). MR 544937
- V. V. Nikulin, Integer symmetric bilinear forms and some of their geometric applications, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 1, 111–177, 238 (Russian). MR 525944
- Genki Ouchi, Automorphism groups of cubic fourfolds and K3 categories, Algebr. Geom. 8 (2021), no. 2, 171–195. MR 4174288, DOI 10.14231/ag-2021-003
- A. N. Rudakov and I. R. Shafarevich, Surfaces of type $K3$ over fields of finite characteristic, Current problems in mathematics, Vol. 18, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1981, pp. 115–207 (Russian). MR 633161
- Francesco Russo and Giovanni Staglianò, Congruences of 5-secant conics and the rationality of some admissible cubic fourfolds, Duke Math. J. 168 (2019), no. 5, 849–865. MR 3934590, DOI 10.1215/00127094-2018-0053
- Claire Voisin, Théorème de Torelli pour les cubiques de $\textbf {P}^5$, Invent. Math. 86 (1986), no. 3, 577–601 (French). MR 860684, DOI 10.1007/BF01389270
- Claire Voisin, Abel-Jacobi map, integral Hodge classes and decomposition of the diagonal, J. Algebraic Geom. 22 (2013), no. 1, 141–174. MR 2993050, DOI 10.1090/S1056-3911-2012-00597-9
- Song Yang and Xun Yu, On lattice polarizable cubic fourfolds, 2021.
- Chenglong Yu and Zhiwei Zheng, Moduli spaces of symmetric cubic fourfolds and locally symmetric varieties, Algebra Number Theory 14 (2020), no. 10, 2647–2683. MR 4190414, DOI 10.2140/ant.2020.14.2647
- Yuri G. Zarhin, Algebraic cycles over cubic fourfolds, Boll. Un. Mat. Ital. B (7) 4 (1990), no. 4, 833–847 (English, with Italian summary). MR 1086707
- Zhiwei Zheng, Orbifold aspects of certain occult period maps, Nagoya Math. J. 243 (2021), 137–156. MR 4298656, DOI 10.1017/nmj.2019.36
Bibliographic Information
- Lisa Marquand
- Affiliation: Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794
- MR Author ID: 1286088
- Email: lisa.marquand@stonybrook.edu
- Received by editor(s): March 10, 2022
- Received by editor(s) in revised form: August 8, 2022
- Published electronically: December 1, 2022
- Additional Notes: This work was partially supported by NSF Grant DMS-2101640 (PI Laza)
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 1373-1406
- MSC (2020): Primary 14J50
- DOI: https://doi.org/10.1090/tran/8811
- MathSciNet review: 4531678