Positivity for quantum cluster algebras from unpunctured orbifolds
HTML articles powered by AMS MathViewer
- by Min Huang;
- Trans. Amer. Math. Soc. 376 (2023), 1155-1197
- DOI: https://doi.org/10.1090/tran/8819
- Published electronically: November 16, 2022
- HTML | PDF | Request permission
Abstract:
We provide a quantum Laurent expansion formula for the quantum cluster algebras from unpunctured orbifolds with arbitrary coefficients and quantization. As an application, positivity for such a class of quantum cluster algebras is provided. Assume for technical reasons that the weights of the orbifold points are $1/2$.References
- Arkady Berenstein and Vladimir Retakh, Noncommutative marked surfaces, Adv. Math. 328 (2018), 1010–1087. MR 3771148, DOI 10.1016/j.aim.2018.02.014
- Arkady Berenstein and Andrei Zelevinsky, Quantum cluster algebras, Adv. Math. 195 (2005), no. 2, 405–455. MR 2146350, DOI 10.1016/j.aim.2004.08.003
- Philippe Caldero and Frédéric Chapoton, Cluster algebras as Hall algebras of quiver representations, Comment. Math. Helv. 81 (2006), no. 3, 595–616. MR 2250855, DOI 10.4171/CMH/65
- Philippe Caldero and Bernhard Keller, From triangulated categories to cluster algebras, Invent. Math. 172 (2008), no. 1, 169–211. MR 2385670, DOI 10.1007/s00222-008-0111-4
- Philippe Caldero and Bernhard Keller, From triangulated categories to cluster algebras. II, Ann. Sci. École Norm. Sup. (4) 39 (2006), no. 6, 983–1009 (English, with English and French summaries). MR 2316979, DOI 10.1016/j.ansens.2006.09.003
- P. G. Cao, M. Huang, and F. Li, Categorification of sign-skew-symmetric cluster algebras and some conjectures on g-vectors, Algebr. Represent. Theory, https://doi.org/10.1007/s10468-021-10081-7.
- İlke Çanakçı and Philipp Lampe, An expansion formula for type $A$ and Kronecker quantum cluster algebras, J. Combin. Theory Ser. A 171 (2020), 105132, 30. MR 4026515, DOI 10.1016/j.jcta.2019.105132
- Ilke Canakci and Ralf Schiffler, Snake graph calculus and cluster algebras from surfaces, J. Algebra 382 (2013), 240–281. MR 3034481, DOI 10.1016/j.jalgebra.2013.02.018
- Ilke Canakci and Ralf Schiffler, Snake graph calculus and cluster algebras from surfaces II: self-crossing snake graphs, Math. Z. 281 (2015), no. 1-2, 55–102. MR 3384863, DOI 10.1007/s00209-015-1475-y
- İlke Çanakçı and Ralf Schiffler, Snake graph calculus and cluster algebras from surfaces III: Band graphs and snake rings, Int. Math. Res. Not. IMRN 4 (2019), 1145–1226. MR 3915299, DOI 10.1093/imrn/rnx157
- İlke Çanakçı and Pavel Tumarkin, Bases for cluster algebras from orbifolds with one marked point, Algebr. Comb. 2 (2019), no. 3, 355–365. MR 3968742, DOI 10.5802/alco.48
- Ben Davison, Positivity for quantum cluster algebras, Ann. of Math. (2) 187 (2018), no. 1, 157–219. MR 3739230, DOI 10.4007/annals.2018.187.1.3
- Laurent Demonet, Categorification of skew-symmetrizable cluster algebras, Algebr. Represent. Theory 14 (2011), no. 6, 1087–1162. MR 2844757, DOI 10.1007/s10468-010-9228-4
- Anna Felikson, Michael Shapiro, and Pavel Tumarkin, Cluster algebras of finite mutation type via unfoldings, Int. Math. Res. Not. IMRN 8 (2012), 1768–1804. MR 2920830, DOI 10.1093/imrn/rnr072
- Anna Felikson, Michael Shapiro, and Pavel Tumarkin, Cluster algebras and triangulated orbifolds, Adv. Math. 231 (2012), no. 5, 2953–3002. MR 2970470, DOI 10.1016/j.aim.2012.07.032
- Anna Felikson and Pavel Tumarkin, Bases for cluster algebras from orbifolds, Adv. Math. 318 (2017), 191–232. MR 3689740, DOI 10.1016/j.aim.2017.07.025
- Sergey Fomin, Michael Shapiro, and Dylan Thurston, Cluster algebras and triangulated surfaces. I. Cluster complexes, Acta Math. 201 (2008), no. 1, 83–146. MR 2448067, DOI 10.1007/s11511-008-0030-7
- Sergey Fomin and Andrei Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), no. 2, 497–529. MR 1887642, DOI 10.1090/S0894-0347-01-00385-X
- Changjian Fu and Bernhard Keller, On cluster algebras with coefficients and 2-Calabi-Yau categories, Trans. Amer. Math. Soc. 362 (2010), no. 2, 859–895. MR 2551509, DOI 10.1090/S0002-9947-09-04979-4
- Mark Gross, Paul Hacking, Sean Keel, and Maxim Kontsevich, Canonical bases for cluster algebras, J. Amer. Math. Soc. 31 (2018), no. 2, 497–608. MR 3758151, DOI 10.1090/jams/890
- Min Huang, Proper Laurent monomial property of acyclic cluster algebras, Comm. Algebra 47 (2019), no. 9, 3520–3526. MR 3969461, DOI 10.1080/00927872.2019.1567746
- Min Huang, New expansion formulas for cluster algebras from surfaces, J. Algebra 588 (2021), 538–573. MR 4318827, DOI 10.1016/j.jalgebra.2021.09.007
- Min Huang, An expansion formula for quantum cluster algebras from unpunctured triangulated surfaces, Selecta Math. (N.S.) 28 (2022), no. 2, Paper No. 21, 58. MR 4357476, DOI 10.1007/s00029-021-00750-2
- M. Huang, Positivity for quantum cluster algebras from orbifolds, In preparation.
- Min Huang and Fang Li, Unfolding of sign-skew-symmetric cluster algebras and its applications to positivity and $F$-polynomials, Adv. Math. 340 (2018), 221–283. MR 3886169, DOI 10.1016/j.aim.2018.10.008
- Seok-Jin Kang, Masaki Kashiwara, Myungho Kim, and Se-jin Oh, Monoidal categorification of cluster algebras, J. Amer. Math. Soc. 31 (2018), no. 2, 349–426. MR 3758148, DOI 10.1090/jams/895
- Masaki Kashiwara, Bases cristallines, C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), no. 6, 277–280 (French, with English summary). MR 1071626
- Yoshiyuki Kimura and Fan Qin, Graded quiver varieties, quantum cluster algebras and dual canonical basis, Adv. Math. 262 (2014), 261–312. MR 3228430, DOI 10.1016/j.aim.2014.05.014
- Kyungyong Lee and Ralf Schiffler, Positivity for cluster algebras, Ann. of Math. (2) 182 (2015), no. 1, 73–125. MR 3374957, DOI 10.4007/annals.2015.182.1.2
- G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), no. 2, 447–498. MR 1035415, DOI 10.1090/S0894-0347-1990-1035415-6
- Gregg Musiker and Ralf Schiffler, Cluster expansion formulas and perfect matchings, J. Algebraic Combin. 32 (2010), no. 2, 187–209. MR 2661414, DOI 10.1007/s10801-009-0210-3
- Gregg Musiker, Ralf Schiffler, and Lauren Williams, Positivity for cluster algebras from surfaces, Adv. Math. 227 (2011), no. 6, 2241–2308. MR 2807089, DOI 10.1016/j.aim.2011.04.018
- Gregg Musiker, Ralf Schiffler, and Lauren Williams, Bases for cluster algebras from surfaces, Compos. Math. 149 (2013), no. 2, 217–263. MR 3020308, DOI 10.1112/S0010437X12000450
- Yann Palu, Cluster characters for 2-Calabi-Yau triangulated categories, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 6, 2221–2248 (English, with English and French summaries). MR 2473635, DOI 10.5802/aif.2412
- Pierre-Guy Plamondon, Cluster characters for cluster categories with infinite-dimensional morphism spaces, Adv. Math. 227 (2011), no. 1, 1–39. MR 2782186, DOI 10.1016/j.aim.2010.12.010
- Pierre-Guy Plamondon, Cluster algebras via cluster categories with infinite-dimensional morphism spaces, Compos. Math. 147 (2011), no. 6, 1921–1954. MR 2862067, DOI 10.1112/S0010437X11005483
- Fan Qin, Triangular bases in quantum cluster algebras and monoidal categorification conjectures, Duke Math. J. 166 (2017), no. 12, 2337–2442. MR 3694569, DOI 10.1215/00127094-2017-0006
- Dylan Rupel, On a quantum analog of the Caldero-Chapoton formula, Int. Math. Res. Not. IMRN 14 (2011), 3207–3236. MR 2817677, DOI 10.1093/imrn/rnq192
- Dylan Rupel, Quantum cluster characters for valued quivers, Trans. Amer. Math. Soc. 367 (2015), no. 10, 7061–7102. MR 3378824, DOI 10.1090/S0002-9947-2015-06251-5
- Ralf Schiffler, On cluster algebras arising from unpunctured surfaces. II, Adv. Math. 223 (2010), no. 6, 1885–1923. MR 2601004, DOI 10.1016/j.aim.2009.10.015
- Ralf Schiffler and Hugh Thomas, On cluster algebras arising from unpunctured surfaces, Int. Math. Res. Not. IMRN 17 (2009), 3160–3189. MR 2534994, DOI 10.1093/imrn/rnp047
- Toshiya Yurikusa, Combinatorial cluster expansion formulas from triangulated surfaces, Electron. J. Combin. 26 (2019), no. 2, Paper No. 2.33, 39. MR 3962229, DOI 10.37236/8351
Bibliographic Information
- Min Huang
- Affiliation: School of Mathematics (Zhuhai), Sun Yat-sen University, Zhuhai, People’s Republic of China
- Email: huangm97@mail.sysu.edu.cn
- Received by editor(s): January 8, 2019
- Received by editor(s) in revised form: May 1, 2022, and May 24, 2022
- Published electronically: November 16, 2022
- Additional Notes: This project was partially supported by the National Natural Science Foundation of China (No. 12101617), Guangdong Basic and Applied Basic Research Foundation 2021A1515012035, and the Fundamental Research Funds for the Central Universities, Sun Yat-sen University.
The author was financially supported by S. Liu, I. Assem, T. Brüstle and D. Smith. - © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 1155-1197
- MSC (2020): Primary 13F60, 05E40
- DOI: https://doi.org/10.1090/tran/8819
- MathSciNet review: 4531672
Dedicated: Dedicated to Professor Fang Li on the occasion of his sixtieth birthday