Character sheaves for symmetric pairs: Special linear groups
HTML articles powered by AMS MathViewer
- by Kari Vilonen and Ting Xue;
- Trans. Amer. Math. Soc. 376 (2023), 837-853
- DOI: https://doi.org/10.1090/tran/8825
- Published electronically: November 16, 2022
- HTML | PDF | Request permission
Abstract:
We give an explicit description of character sheaves for the symmetric pairs associated to inner involutions of the special linear groups. We make use of the general strategy given in Vilonen and Xue [Character sheaves for classical symmetric pairs, Represent. Theory 26 (2022), 1097–1144] and central character consideration. We also determine the cuspidal character sheaves.References
- A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171 (French). MR 751966
- Tsao-Hsien Chen, Kari Vilonen, and Ting Xue, Springer correspondence for the split symmetric pair in type $A$, Compos. Math. 154 (2018), no. 11, 2403–2425. MR 3867304, DOI 10.1112/s0010437x18007443
- David H. Collingwood and William M. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993. MR 1251060
- Mark Goresky and Robert MacPherson, Stratified Morse theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 14, Springer-Verlag, Berlin, 1988. MR 932724, DOI 10.1007/978-3-642-71714-7
- Mikhail Grinberg, On the specialization to the asymptotic cone, J. Algebraic Geom. 10 (2001), no. 1, 1–17. MR 1795547
- Mikhail Grinberg, A generalization of Springer theory using nearby cycles, Represent. Theory 2 (1998), 410–431. MR 1657203, DOI 10.1090/S1088-4165-98-00053-3
- Mikhail Grinberg, Morse groups in symmetric spaces corresponding to the symmetric group, Selecta Math. (N.S.) 5 (1999), no. 3, 303–323. MR 1723810, DOI 10.1007/s000290050050
- M. Grinberg, K. Vilonen, and T. Xue, Nearby cycle sheaves for symmetric pairs, Preprint, arXiv:1805.02794. To appear in Amer. J. Math.
- Anthony Henderson, Fourier transform, parabolic induction, and nilpotent orbits, Transform. Groups 6 (2001), no. 4, 353–370. MR 1870052, DOI 10.1007/BF01237252
- Masaki Kashiwara and Pierre Schapira, Sheaves on manifolds, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 292, Springer-Verlag, Berlin, 1990. With a chapter in French by Christian Houzel. MR 1074006, DOI 10.1007/978-3-662-02661-8
- G. Lusztig, Intersection cohomology complexes on a reductive group, Invent. Math. 75 (1984), no. 2, 205–272. MR 732546, DOI 10.1007/BF01388564
- G. Lusztig, Study of antiorbital complexes, Representation theory and mathematical physics, Contemp. Math., vol. 557, Amer. Math. Soc., Providence, RI, 2011, pp. 259–287. MR 2848930, DOI 10.1090/conm/557/11036
- Vladimir L. Popov, Self-dual algebraic varieties and nilpotent orbits, Algebra, arithmetic and geometry, Part I, II (Mumbai, 2000) Tata Inst. Fund. Res. Stud. Math., vol. 16, Tata Inst. Fund. Res., Bombay, 2002, pp. 509–533. MR 1940680
- T. A. Springer and R. Steinberg, Conjugacy classes, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) Lecture Notes in Math., Vol. 131, Springer, Berlin-New York, 1970, pp. 167–266. MR 268192
- Kari Vilonen and Ting Xue, Character sheaves for classical symmetric pairs, Represent. Theory 26 (2022), 1097–1144. With an appendix by Dennis Stanton. MR 4497390, DOI 10.1090/ert/622
- K. Vilonen and T. Xue, Character sheaves for graded Lie algebras: stable gradings, arXiv:2012.08111.
- T. Xue, Character sheaves for classical symmetric pairs: spin groups, arXiv:2111.00403. To appear in Pure Appl. Math. Q.
Bibliographic Information
- Kari Vilonen
- Affiliation: School of Mathematics and Statistics, University of Melbourne, VIC 3010, Australia; and Department of Mathematics and Statistics, University of Helsinki, Helsinki, 00014, Finland
- MR Author ID: 178620
- ORCID: 0000-0003-4231-2910
- Email: kari.vilonen@unimelb.edu.au
- Ting Xue
- Affiliation: School of Mathematics and Statistics, University of Melbourne, VIC 3010, Australia; and Department of Mathematics and Statistics, University of Helsinki, Helsinki, 00014, Finland
- MR Author ID: 779365
- ORCID: 0000-0002-9107-9361
- Email: ting.xue@unimelb.edu.au
- Received by editor(s): November 17, 2021
- Published electronically: November 16, 2022
- Additional Notes: The first author was supported in part by the ARC grants DP150103525 and DP180101445 and the Academy of Finland.
The second author was supported in part by the ARC grant DP150103525. - © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 837-853
- MSC (2020): Primary 20G20, 14L35, 17B08
- DOI: https://doi.org/10.1090/tran/8825
- MathSciNet review: 4531663