A simple construction of the dynamical $\Phi ^4_3$ model
HTML articles powered by AMS MathViewer
- by Aukosh Jagannath and Nicolas Perkowski;
- Trans. Amer. Math. Soc. 376 (2023), 1507-1522
- DOI: https://doi.org/10.1090/tran/8724
- Published electronically: January 4, 2023
- PDF | Request permission
Abstract:
The $\Phi ^4_3$ equation is a singular stochastic PDE with important applications in mathematical physics. Its solution usually requires advanced mathematical theories like regularity structures or paracontrolled distributions, and even local well-posedness is highly nontrivial. Here we propose a multiplicative transformation to reduce the periodic $\Phi ^4_3$ equation to a well-posed random PDE. This leads to a simple and elementary proof of global well-posedness, which only relies on Schauder estimates, the maximum principle, and basic estimates for paraproducts, and in particular does not need regularity structures or paracontrolled distributions.References
- Michael Aizenman and Hugo Duminil-Copin, Marginal triviality of the scaling limits of critical 4D Ising and $\phi _4^4$ models, Ann. of Math. (2) 194 (2021), no. 1, 163–235. MR 4276286, DOI 10.4007/annals.2021.194.1.3
- Y. Bruned, A. Chandra, I. Chevyrev, and M. Hairer, Renormalising SPDEs in regularity structures, J. Eur. Math. Soc. (JEMS) 23 (2021), no. 3, 869–947. MR 4210726, DOI 10.4171/jems/1025
- Hajer Bahouri, Jean-Yves Chemin, and Raphaël Danchin, Fourier analysis and nonlinear partial differential equations, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 343, Springer, Heidelberg, 2011. MR 2768550, DOI 10.1007/978-3-642-16830-7
- Jean-Michel Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup. (4) 14 (1981), no. 2, 209–246 (French). MR 631751, DOI 10.24033/asens.1404
- Rémi Catellier and Khalil Chouk, Paracontrolled distributions and the 3-dimensional stochastic quantization equation, Ann. Probab. 46 (2018), no. 5, 2621–2679. MR 3846835, DOI 10.1214/17-AOP1235
- Ajay Chandra, Augustin Moinat, and Hendrik Weber, A priori bounds for the $\phi ^4$ equation in the full sub-critical regime, Preprint, arXiv:1910.13854 (2019).
- M. Furlan and M. Gubinelli, Weak universality for a class of 3d stochastic reaction-diffusion models, Probab. Theory Related Fields 173 (2019), no. 3-4, 1099–1164. MR 3936152, DOI 10.1007/s00440-018-0849-6
- Massimiliano Gubinelli and Martina Hofmanová, Global solutions to elliptic and parabolic $\Phi ^4$ models in Euclidean space, Comm. Math. Phys. 368 (2019), no. 3, 1201–1266. MR 3951704, DOI 10.1007/s00220-019-03398-4
- Massimiliano Gubinelli and Martina Hofmanová, A PDE construction of the Euclidean $\phi _3^4$ quantum field theory, Comm. Math. Phys. 384 (2021), no. 1, 1–75. MR 4252872, DOI 10.1007/s00220-021-04022-0
- Massimiliano Gubinelli, Peter Imkeller, and Nicolas Perkowski, Paracontrolled distributions and singular PDEs, Forum Math. Pi 3 (2015), e6, 75. MR 3406823, DOI 10.1017/fmp.2015.2
- Massimiliano Gubinelli and Nicolas Perkowski, KPZ reloaded, Comm. Math. Phys. 349 (2017), no. 1, 165–269. MR 3592748, DOI 10.1007/s00220-016-2788-3
- M. Hairer, A theory of regularity structures, Invent. Math. 198 (2014), no. 2, 269–504. MR 3274562, DOI 10.1007/s00222-014-0505-4
- Martin Hairer and Cyril Labbé, A simple construction of the continuum parabolic Anderson model on $\textbf {R}^2$, Electron. Commun. Probab. 20 (2015), no. 43, 11. MR 3358965, DOI 10.1214/ECP.v20-4038
- Martin Hairer and Rhys Steele, The $\Phi _3^4$ measure has sub-Gaussian tails, J. Stat. Phys. 186 (2022), no. 3, Paper No. 38, 25. MR 4375843, DOI 10.1007/s10955-021-02866-3
- Martin Hairer and Weijun Xu, Large-scale behavior of three-dimensional continuous phase coexistence models, Comm. Pure Appl. Math. 71 (2018), no. 4, 688–746. MR 3772400, DOI 10.1002/cpa.21738
- Oscar Junge, A simple approach to $\Phi ^4_3$, Master’s thesis, Humboldt-Universität zu Berlin, 2021, supervised by Willem van Zuijlen.
- Helena Kremp and Nicolas Perkowski, Multidimensional SDE with distributional drift and Lévy noise, Bernoulli 28 (2022), no. 3, 1757–1783. MR 4411510, DOI 10.3150/21-bej1394
- Jean-Christophe Mourrat and Hendrik Weber, Convergence of the two-dimensional dynamic Ising-Kac model to $\Phi ^4_2$, Comm. Pure Appl. Math. 70 (2017), no. 4, 717–812. MR 3628883, DOI 10.1002/cpa.21655
- Jean-Christophe Mourrat and Hendrik Weber, The dynamic $\Phi ^4_3$ model comes down from infinity, Comm. Math. Phys. 356 (2017), no. 3, 673–753. MR 3719541, DOI 10.1007/s00220-017-2997-4
- Augustin Moinat and Hendrik Weber, Space-time localisation for the dynamic $\Phi ^4_3$ model, Comm. Pure Appl. Math. 73 (2020), no. 12, 2519–2555. MR 4164267, DOI 10.1002/cpa.21925
- Jean-Christophe Mourrat, Hendrik Weber, and Weijun Xu, Construction of $\Phi ^4_3$ diagrams for pedestrians, From particle systems to partial differential equations, Springer Proc. Math. Stat., vol. 209, Springer, Cham, 2017, pp. 1–46. MR 3746744, DOI 10.1007/978-3-319-66839-0_{1}
- Nicolas Simon Perkowski, Studies of robustness in stochastic analysis and mathematical finance, Ph.D. thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, 2014.
- G. Parisi and Yong Shi Wu, Perturbation theory without gauge fixing, Sci. Sinica 24 (1981), no. 4, 483–496. MR 626795
- Xicheng Zhang, Rongchan Zhu, and Xiangchan Zhu, Singular HJB equations with applications to KPZ on the real line, Preprint, arXiv:2007.06783 (2020).
Bibliographic Information
- Aukosh Jagannath
- Affiliation: Department of Statistics and Actuarial Sciences, University of Waterloo
- MR Author ID: 989445
- Email: a.jagannath@uwaterloo.ca
- Nicolas Perkowski
- Affiliation: Institut für Mathematik, Freie Universität Berlin
- MR Author ID: 999469
- ORCID: 0000-0002-3078-7284
- Email: perkowski@math.fu-berlin.de
- Received by editor(s): September 1, 2021
- Published electronically: January 4, 2023
- Additional Notes: The first author was supported by NSERC, cette recherche a été financée par CRSNG [RGPIN-2020-04597, DGECR-2020-00199]. The second author was financially supported by the DFG via Research Unit FOR2402
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 1507-1522
- MSC (2020): Primary 60H17; Secondary 35S50
- DOI: https://doi.org/10.1090/tran/8724
- MathSciNet review: 4549683