When do two rational functions have locally biholomorphic Julia sets?
HTML articles powered by AMS MathViewer
- by Romain Dujardin, Charles Favre and Thomas Gauthier;
- Trans. Amer. Math. Soc. 376 (2023), 1601-1624
- DOI: https://doi.org/10.1090/tran/8775
- Published electronically: October 3, 2022
- HTML | PDF | Request permission
Abstract:
In this article we address the following question, whose interest was recently renewed by problems arising in arithmetic dynamics: under which conditions does there exist a local biholomorphism between the Julia sets of two given one-dimensional rational maps? In particular we find criteria ensuring that such a local isomorphism is induced by an algebraic correspondence. This extends and unifies classical results due to Baker, Beardon, Eremenko, Levin, Przytycki and others. The proof involves entire curves and positive currents.References
- I. N. Baker and A. Erëmenko, A problem on Julia sets, Ann. Acad. Sci. Fenn. Ser. A I Math. 12 (1987), no. 2, 229–236. MR 951972, DOI 10.5186/aasfm.1987.1205
- Matthew Baker and Laura DeMarco, Preperiodic points and unlikely intersections, Duke Math. J. 159 (2011), no. 1, 1–29. MR 2817647, DOI 10.1215/00127094-1384773
- A. F. Beardon, Polynomials with identical Julia sets, Complex Variables Theory Appl. 17 (1992), no. 3-4, 195–200. MR 1147050, DOI 10.1080/17476939208814512
- Eric Bedford, Mikhail Lyubich, and John Smillie, Polynomial diffeomorphisms of $\textbf {C}^2$. IV. The measure of maximal entropy and laminar currents, Invent. Math. 112 (1993), no. 1, 77–125. MR 1207478, DOI 10.1007/BF01232426
- François Berteloot, Méthodes de changement d’échelles en analyse complexe, Ann. Fac. Sci. Toulouse Math. (6) 15 (2006), no. 3, 427–483 (French, with English and French summaries). MR 2246412, DOI 10.5802/afst.1127
- Marco Brunella, Courbes entières et feuilletages holomorphes, Enseign. Math. (2) 45 (1999), no. 1-2, 195–216 (French). MR 1703368
- Xavier Buff and Adam L. Epstein, From local to global analytic conjugacies, Ergodic Theory Dynam. Systems 27 (2007), no. 4, 1073–1094. MR 2342966, DOI 10.1017/S0143385707000041
- Jean-Pierre Demailly, Analytic methods in algebraic geometry, Surveys of Modern Mathematics, vol. 1, International Press, Somerville, MA; Higher Education Press, Beijing, 2012. MR 2978333
- Laura G. DeMarco and Curtis T. McMullen, Trees and the dynamics of polynomials, Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), no. 3, 337–382 (English, with English and French summaries). MR 2482442, DOI 10.24033/asens.2070
- Tien-Cuong Dinh, Remarque sur les fonctions ayant le même ensemble de Julia, Ann. Fac. Sci. Toulouse Math. (6) 9 (2000), no. 1, 55–70 (French, with English and French summaries). MR 1815940, DOI 10.5802/afst.953
- Joseph L. Doob, Classical potential theory and its probabilistic counterpart, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1984 edition. MR 1814344, DOI 10.1007/978-3-642-56573-1
- Romain Dujardin, Laminar currents in ${\Bbb P}^2$, Math. Ann. 325 (2003), no. 4, 745–765. MR 1974567, DOI 10.1007/s00208-002-0402-9
- R. Dujardin and C. Favre, The dynamical Manin-Mumford problem for plane polynomial automorphisms, J. Eur. Math. Soc. (JEMS) 19 (2017), no. 11, 3421–3465. MR 3713045, DOI 10.4171/JEMS/743
- Nathaniel Emerson, Brownian motion, random walks on trees, and harmonic measure on polynomial Julia sets, math.DS:0609044, 2006.
- A. È. Erëmenko, Some functional equations connected with the iteration of rational functions, Algebra i Analiz 1 (1989), no. 4, 102–116 (Russian); English transl., Leningrad Math. J. 1 (1990), no. 4, 905–919. MR 1027462
- Alexandre Eremenko and Sebastian van Strien, Rational maps with real multipliers, Trans. Amer. Math. Soc. 363 (2011), no. 12, 6453–6463. MR 2833563, DOI 10.1090/S0002-9947-2011-05308-0
- P. Fatou, Sur les équations fonctionnelles, Bull. Soc. Math. France 48 (1920), 208–314 (French). MR 1504797, DOI 10.24033/bsmf.1008
- Charles Favre and Thomas Gauthier, The arithmetic of polynomial dynamical pairs, Annals of Mathematics Studies, vol. 214, Princeton University Press, Princeton, NJ, 2022.
- John B. Garnett and Donald E. Marshall, Harmonic measure, New Mathematical Monographs, vol. 2, Cambridge University Press, Cambridge, 2005. MR 2150803, DOI 10.1017/CBO9780511546617
- D. Ghioca, K. D. Nguyen, and H. Ye, The dynamical Manin-Mumford conjecture and the dynamical Bogomolov conjecture for split rational maps, J. Eur. Math. Soc. (JEMS) 21 (2019), no. 5, 1571–1594. MR 3941498, DOI 10.4171/JEMS/869
- Hiroyuki Inou, Extending local analytic conjugacies, Trans. Amer. Math. Soc. 363 (2011), no. 1, 331–343. MR 2719684, DOI 10.1090/S0002-9947-2010-05049-4
- G. M. Levin, Symmetries on Julia sets, Mat. Zametki 48 (1990), no. 5, 72–79, 159 (Russian); English transl., Math. Notes 48 (1990), no. 5-6, 1126–1131 (1991). MR 1092156, DOI 10.1007/BF01236299
- G. Levin and F. Przytycki, When do two rational functions have the same Julia set?, Proc. Amer. Math. Soc. 125 (1997), no. 7, 2179–2190. MR 1376996, DOI 10.1090/S0002-9939-97-03810-0
- Luna Lomonaco and Sabyasachi Mukherjee, A rigidity result for some parabolic germs, Indiana Univ. Math. J. 67 (2018), no. 5, 2089–2101. MR 3875252, DOI 10.1512/iumj.2018.67.7459
- Yusheng Luo, On the inhomogeneity of the Mandelbrot set, Int. Math. Res. Not. IMRN 8 (2021), 6051–6076. MR 4251271, DOI 10.1093/imrn/rnz035
- Curtis T. McMullen. The motion of the maximal measure of a polynomial. Preprint, 1985.
- Alice Medvedev and Thomas Scanlon, Invariant varieties for polynomial dynamical systems, Ann. of Math. (2) 179 (2014), no. 1, 81–177. MR 3126567, DOI 10.4007/annals.2014.179.1.2
- Nicolae Mihalache, Julia and John revisited, Fund. Math. 215 (2011), no. 1, 67–86. MR 2851702, DOI 10.4064/fm215-1-4
- Peter Mörters and Yuval Peres, Brownian motion, Cambridge Series in Statistical and Probabilistic Mathematics, vol. 30, Cambridge University Press, Cambridge, 2010. With an appendix by Oded Schramm and Wendelin Werner. MR 2604525, DOI 10.1017/CBO9780511750489
- Fedor Pakovich, Commuting rational functions revisited, Ergodic Theory Dynam. Systems 41 (2021), no. 1, 295–320. MR 4190057, DOI 10.1017/etds.2019.51
- Fedor Pakovich, On iterates of rational functions with maximal number of critical values, arXiv:2107.05963, 2021.
- Fedor Pakovich, Invariant curves for endomorphisms of $\mathbb {P}^1\times \mathbb {P}^1$, Math. Ann., https://doi.org/10.1007/s00208-021-02304-5, 2022.
- Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 299, Springer-Verlag, Berlin, 1992. MR 1217706, DOI 10.1007/978-3-662-02770-7
- Feliks Przytycki, Juan Rivera-Letelier, and Stanislav Smirnov, Equivalence and topological invariance of conditions for non-uniform hyperbolicity in the iteration of rational maps, Invent. Math. 151 (2003), no. 1, 29–63. MR 1943741, DOI 10.1007/s00222-002-0243-x
- Feliks Przytycki and Steffen Rohde, Porosity of Collet-Eckmann Julia sets, Fund. Math. 155 (1998), no. 2, 189–199. MR 1606527
- Feliks Przytycki and Mariusz Urbański, Conformal fractals: ergodic theory methods, London Mathematical Society Lecture Note Series, vol. 371, Cambridge University Press, Cambridge, 2010. MR 2656475, DOI 10.1017/CBO9781139193184
- Juan Rivera-Letelier, The maximal entropy measure detects non-uniform hyperbolicity, Math. Res. Lett. 17 (2010), no. 5, 851–866. MR 2727614, DOI 10.4310/MRL.2010.v17.n5.a5
- W. Schmidt and N. Steinmetz, The polynomials associated with a Julia set, Bull. London Math. Soc. 27 (1995), no. 3, 239–241. MR 1328699, DOI 10.1112/blms/27.3.239
- Michael Shub and Dennis Sullivan, Expanding endomorphisms of the circle revisited, Ergodic Theory Dynam. Systems 5 (1985), no. 2, 285–289. MR 796755, DOI 10.1017/S014338570000290X
- William P. Thurston, On the geometry and dynamics of iterated rational maps, Complex dynamics, A K Peters, Wellesley, MA, 2009, pp. 3–137. Edited by Dierk Schleicher and Nikita Selinger and with an appendix by Schleicher. MR 2508255, DOI 10.1201/b10617-3
- M. Tsuji, Potential theory in modern function theory, Maruzen Co. Ltd., Tokyo, 1959. MR 114894
- Hexi Ye, Rational functions with identical measure of maximal entropy, Adv. Math. 268 (2015), 373–395. MR 3276598, DOI 10.1016/j.aim.2014.10.001
- Anna Zdunik, On biaccessible points in Julia sets of polynomials, Fund. Math. 163 (2000), no. 3, 277–286. MR 1758329, DOI 10.4064/fm-163-3-277-286
Bibliographic Information
- Romain Dujardin
- Affiliation: Sorbonne Université, Laboratoire de probabilités, statistique et modélisation, 4 place Jussieu, 75005 Paris, France
- MR Author ID: 687799
- ORCID: 0000-0003-3798-0316
- Email: romain.dujardin@sorbonne-universite.fr
- Charles Favre
- Affiliation: CMLS, Ecole Polytechnique, 91128 Palaiseau Cedex, France
- MR Author ID: 641179
- Email: charles.favre@polytechnique.edu
- Thomas Gauthier
- Affiliation: Laboratoire de Mathématiques d’Orsay, Bâtiment 307, Université Paris-Saclay, 91405 Orsay Cedex, France
- MR Author ID: 1019319
- Email: thomas.gauthier1@universite-paris-saclay.fr
- Received by editor(s): January 17, 2022
- Received by editor(s) in revised form: July 12, 2022
- Published electronically: October 3, 2022
- Additional Notes: The third author was partially supported by the ANR grant Fatou ANR-17-CE40-0002-01.
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 1601-1624
- MSC (2010): Primary 37F10
- DOI: https://doi.org/10.1090/tran/8775
- MathSciNet review: 4549686