Random groups at density $d<3/14$ act non-trivially on a CAT(0) cube complex
HTML articles powered by AMS MathViewer
- by MurphyKate Montee;
- Trans. Amer. Math. Soc. 376 (2023), 1653-1682
- DOI: https://doi.org/10.1090/tran/8778
- Published electronically: November 4, 2022
- HTML | PDF
Abstract:
For random groups in the Gromov density model at $d<3/14$, we construct walls in the Cayley complex $X$ which give rise to a non-trivial action by isometries on a CAT(0) cube complex. This extends results of Ollivier-Wise and Mackay-Przytycki at densities $d<1/5$ and $d<5/24$, respectively. We are able to overcome one of the main combinatorial challenges remaining from the work of Mackay-Przytycki, and we give a construction that plausibly works at any density $d<1/4$.References
- Calum J. Ashcroft and Colva M. Roney-Dougal, On random presentations with fixed relator length, Comm. Algebra 48 (2020), no. 5, 1904–1918. MR 4085767, DOI 10.1080/00927872.2019.1710161
- Calum J. Ashcroft, Property (T) in density-type models of random groups, 2021.
- François Dahmani, Vincent Guirardel, and Piotr Przytycki, Random groups do not split, Math. Ann. 349 (2011), no. 3, 657–673. MR 2755002, DOI 10.1007/s00208-010-0532-4
- Yen Duong, On Random Groups: The Square Model at Density d < 1/3 and as Quotients of Free Nilpotent Groups, ProQuest LLC, Ann Arbor, MI, 2017. Thesis (Ph.D.)–University of Illinois at Chicago. MR 3781851
- Étienne Ghys and Pierre de la Harpe, Quasi-isométries et quasi-géodésiques, Sur les groupes hyperboliques d’après Mikhael Gromov (Bern, 1988) Progr. Math., vol. 83, Birkhäuser Boston, Boston, MA, 1990, pp. 79–102 (French). MR 1086653, DOI 10.1007/978-1-4684-9167-8_{5}
- M. Gromov, Asymptotic invariants of infinite groups, Geometric group theory, Vol. 2 (Sussex, 1991) London Math. Soc. Lecture Note Ser., vol. 182, Cambridge Univ. Press, Cambridge, 1993, pp. 1–295. MR 1253544
- Marcin Kotowski and MichałKotowski, Random groups and property $(T)$: Żuk’s theorem revisited, J. Lond. Math. Soc. (2) 88 (2013), no. 2, 396–416. MR 3106728, DOI 10.1112/jlms/jdt024
- MurphyKate Montee, Property (T) in $k$-gonal random groups, Glasg. Math. J., 2021.
- John M. Mackay and Piotr Przytycki, Balanced walls for random groups, Michigan Math. J. 64 (2015), no. 2, 397–419. MR 3359032, DOI 10.1307/mmj/1434731930
- Graham A. Niblo and Martin A. Roller, Groups acting on cubes and Kazhdan’s property (T), Proc. Amer. Math. Soc. 126 (1998), no. 3, 693–699. MR 1459140, DOI 10.1090/S0002-9939-98-04463-3
- Tomasz Odrzygóźdź, Nonplanar isoperimetric inequality for random groups, 2014, http://students.mimuw.edu.pl/\~{}to277393/web/files/nonplanar.pdf.
- Tomasz Odrzygóźdź, The square model for random groups, Colloq. Math., 142 (2014).
- Tomasz Odrzygóźdź, Bent walls for random groups in the square and hexagonal model, 2019.
- Y. Ollivier, Sharp phase transition theorems for hyperbolicity of random groups, Geom. Funct. Anal. 14 (2004), no. 3, 595–679. MR 2100673, DOI 10.1007/s00039-004-0470-y
- Yann Ollivier, A January 2005 invitation to random groups, Ensaios Matemáticos [Mathematical Surveys], vol. 10, Sociedade Brasileira de Matemática, Rio de Janeiro, 2005. MR 2205306
- Yann Ollivier, Some small cancellation properties of random groups, Internat. J. Algebra Comput. 17 (2007), no. 1, 37–51. MR 2300404, DOI 10.1142/S021819670700338X
- Yann Ollivier and Daniel T. Wise, Cubulating random groups at density less than $1/6$, Trans. Amer. Math. Soc. 363 (2011), no. 9, 4701–4733. MR 2806688, DOI 10.1090/S0002-9947-2011-05197-4
- Michah Sageev, Ends of group pairs and non-positively curved cube complexes, Proc. London Math. Soc. (3) 71 (1995), no. 3, 585–617. MR 1347406, DOI 10.1112/plms/s3-71.3.585
- A. Żuk, Property (T) and Kazhdan constants for discrete groups, Geom. Funct. Anal. 13 (2003), no. 3, 643–670. MR 1995802, DOI 10.1007/s00039-003-0425-8
Bibliographic Information
- MurphyKate Montee
- Affiliation: Department of Mathematics and Statistics, Carleton College, Northfield, Minnesota
- MR Author ID: 1106357
- ORCID: 0000-0002-1315-5154
- Email: mmontee@carleton.edu
- Received by editor(s): December 3, 2021
- Received by editor(s) in revised form: June 28, 2022, and July 18, 2022
- Published electronically: November 4, 2022
- Additional Notes: This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE 1144082.
- © Copyright 2022 by the authors
- Journal: Trans. Amer. Math. Soc. 376 (2023), 1653-1682
- MSC (2020): Primary 20F65; Secondary 20P05
- DOI: https://doi.org/10.1090/tran/8778
- MathSciNet review: 4549688