An exponential bound on the number of non-isotopic commutative semifields
HTML articles powered by AMS MathViewer
- by Faruk Göloğlu and Lukas Kölsch;
- Trans. Amer. Math. Soc. 376 (2023), 1683-1716
- DOI: https://doi.org/10.1090/tran/8785
- Published electronically: December 16, 2022
- PDF | Request permission
Abstract:
We show that the number of non-isotopic commutative semifields of odd order $p^{n}$ is exponential in $n$ when $n = 4t$ and $t$ is not a power of $2$. We introduce a new family of commutative semifields and a method for proving isotopy results on commutative semifields that we use to deduce the aforementioned bound. The previous best bound on the number of non-isotopic commutative semifields of odd order was quadratic in $n$ and given by Zhou and Pott [Adv. Math. 234 (2013), pp. 43–60]. Similar bounds in the case of even order were given in Kantor [J. Algebra 270 (2003), pp. 96–114] and Kantor and Williams [Trans. Amer. Math. Soc. 356 (2004), pp. 895–938].References
- A. A. Albert, Finite division algebras and finite planes, Proc. Sympos. Appl. Math., Vol. 10, Amer. Math. Soc., Providence, RI, 1960, pp. 53–70. MR 116036
- A. A. Albert, Generalized twisted fields, Pacific J. Math. 11 (1961), 1–8. MR 122850, DOI 10.2140/pjm.1961.11.1
- Jürgen Bierbrauer, New semifields, PN and APN functions, Des. Codes Cryptogr. 54 (2010), no. 3, 189–200. MR 2584973, DOI 10.1007/s10623-009-9318-7
- Jürgen Bierbrauer, Projective polynomials, a projection construction and a family of semifields, Des. Codes Cryptogr. 79 (2016), no. 1, 183–200. MR 3470785, DOI 10.1007/s10623-015-0044-z
- Antonia W. Bluher, On $x^{q+1}+ax+b$, Finite Fields Appl. 10 (2004), no. 3, 285–305. MR 2067599, DOI 10.1016/j.ffa.2003.08.004
- Lilya Budaghyan and Tor Helleseth, New perfect nonlinear multinomials over $\mathbf F_{p^{2k}}$ for any odd prime $p$, Sequences and their applications—SETA 2008, Lecture Notes in Comput. Sci., vol. 5203, Springer, Berlin, 2008, pp. 403–414. MR 2646419, DOI 10.1007/978-3-540-85912-3_{3}5
- Stephen D. Cohen and Michael J. Ganley, Commutative semifields, two-dimensional over their middle nuclei, J. Algebra 75 (1982), no. 2, 373–385. MR 653897, DOI 10.1016/0021-8693(82)90045-X
- Robert S. Coulter and Marie Henderson, Commutative presemifields and semifields, Adv. Math. 217 (2008), no. 1, 282–304. MR 2365198, DOI 10.1016/j.aim.2007.07.007
- Robert S. Coulter and Rex W. Matthews, Planar functions and planes of Lenz-Barlotti class II, Des. Codes Cryptogr. 10 (1997), no. 2, 167–184. MR 1432296, DOI 10.1023/A:1008292303803
- Peter Dembowski and T. G. Ostrom, Planes of order $n$ with collineation groups of order $n^{2}$, Math. Z. 103 (1968), 239–258. MR 226486, DOI 10.1007/BF01111042
- Ulrich Dempwolff, CCZ equivalence of power functions, Des. Codes Cryptogr. 86 (2018), no. 3, 665–692. MR 3767794, DOI 10.1007/s10623-017-0350-8
- L. E. Dickson, Linear algebras with associativity not assumed, Duke Math. J. 1 (1935), no. 2, 113–125. MR 1545870, DOI 10.1215/S0012-7094-35-00112-0
- Cunsheng Ding and Jin Yuan, A family of skew Hadamard difference sets, J. Combin. Theory Ser. A 113 (2006), no. 7, 1526–1535. MR 2259075, DOI 10.1016/j.jcta.2005.10.006
- Tao Feng and Weicong Li, On the isotopism classes of the Budaghyan-Helleseth commutative semifields, Finite Fields Appl. 53 (2018), 175–188. MR 3834894, DOI 10.1016/j.ffa.2018.06.001
- Michael J. Ganley, Central weak nucleus semifields, European J. Combin. 2 (1981), no. 4, 339–347. MR 638409, DOI 10.1016/S0195-6698(81)80041-8
- Faruk Göloğlu and Lukas Kölsch, Equivalences of biprojective almost perfect nonlinear functions, arXiv:2111.04197, 2021.
- Marshall Hall Jr., The theory of groups, The Macmillan Company, New York, 1959. MR 103215
- Bertram Huppert and Norman Blackburn, Finite groups. II, Grundlehren der Mathematischen Wissenschaften, vol. 242, Springer-Verlag, Berlin-New York, 1982. AMD, 44. MR 650245
- William M. Kantor, Commutative semifields and symplectic spreads, J. Algebra 270 (2003), no. 1, 96–114. MR 2015931, DOI 10.1016/S0021-8693(03)00411-3
- William M. Kantor and Michael E. Williams, Symplectic semifield planes and $\Bbb Z_4$-linear codes, Trans. Amer. Math. Soc. 356 (2004), no. 3, 895–938. MR 1984461, DOI 10.1090/S0002-9947-03-03401-9
- Christian Kaspers and Yue Zhou, The number of almost perfect nonlinear functions grows exponentially, J. Cryptology 34 (2021), no. 1, Paper No. 4, 37. MR 4196010, DOI 10.1007/s00145-020-09373-w
- Donald E. Knuth, Finite semifields and projective planes, J. Algebra 2 (1965), 182–217. MR 175942, DOI 10.1016/0021-8693(65)90018-9
- Gohar M. Kyureghyan and Alexander Pott, Some theorems on planar mappings, Arithmetic of finite fields, Lecture Notes in Comput. Sci., vol. 5130, Springer, Berlin, 2008, pp. 117–122. MR 2476722, DOI 10.1007/978-3-540-69499-1_{1}0
- G. Lunardon, G. Marino, O. Polverino, and R. Trombetti, Symplectic semifield spreads of $\textrm {PG}(5,q)$ and the Veronese surface, Ric. Mat. 60 (2011), no. 1, 125–142. MR 2803937, DOI 10.1007/s11587-010-0098-1
- Giuseppe Marino and Olga Polverino, On the nuclei of a finite semifield, Theory and applications of finite fields, Contemp. Math., vol. 579, Amer. Math. Soc., Providence, RI, 2012, pp. 123–141. MR 2975738, DOI 10.1090/conm/579/11525
- Giampaolo Menichetti, On a Kaplansky conjecture concerning three-dimensional division algebras over a finite field, J. Algebra 47 (1977), no. 2, 400–410. MR 453823, DOI 10.1016/0021-8693(77)90231-9
- Giampaolo Menichetti, $n$-dimensional algebras over a field with a cyclic extension of degree $n$, Geom. Dedicata 63 (1996), no. 1, 69–94. MR 1413622, DOI 10.1007/BF00181186
- Stanley E. Payne, Topics in finite geometry: ovals, ovoids and generalized quadrangles, Unpublished, 2007.
- Alexander Pott, Almost perfect and planar functions, Des. Codes Cryptogr. 78 (2016), no. 1, 141–195. MR 3440228, DOI 10.1007/s10623-015-0151-x
- Alexander Pott, Kai-Uwe Schmidt, and Yue Zhou, Semifields, relative difference sets, and bent functions, Algebraic curves and finite fields, Radon Ser. Comput. Appl. Math., vol. 16, De Gruyter, Berlin, 2014, pp. 161–178. MR 3287687
- John Sheekey, MRD codes: constructions and connections, Combinatorics and finite fields—difference sets, polynomials, pseudorandomness and applications, Radon Ser. Comput. Appl. Math., vol. 23, De Gruyter, Berlin, [2019] ©2019, pp. 255–285. MR 4359979, DOI 10.1515/9783110642094-013
- Satoshi Yoshiara, Equivalences of power APN functions with power or quadratic APN functions, J. Algebraic Combin. 44 (2016), no. 3, 561–585. MR 3552900, DOI 10.1007/s10801-016-0680-z
- Zhengbang Zha, Gohar M. Kyureghyan, and Xueli Wang, Perfect nonlinear binomials and their semifields, Finite Fields Appl. 15 (2009), no. 2, 125–133. MR 2494329, DOI 10.1016/j.ffa.2008.09.002
- Zhengbang Zha and Xueli Wang, New families of perfect nonlinear polynomial functions, J. Algebra 322 (2009), no. 11, 3912–3918. MR 2556130, DOI 10.1016/j.jalgebra.2009.04.042
- Yue Zhou and Alexander Pott, A new family of semifields with 2 parameters, Adv. Math. 234 (2013), 43–60. MR 3003924, DOI 10.1016/j.aim.2012.10.014
Bibliographic Information
- Faruk Göloğlu
- Affiliation: Faculty of Mathematics and Physics, Charles University in Prague, Czechia
- ORCID: 0000-0002-1223-3093
- Email: Faruk.Gologlu@mff.cuni.cz
- Lukas Kölsch
- Affiliation: University of Rostock, Germany; and Department of Mathematics and Statistics, University of South Florida
- ORCID: 0000-0002-2966-0710
- Email: lukas.koelsch.math@gmail.com
- Received by editor(s): August 22, 2021
- Received by editor(s) in revised form: June 19, 2022, and July 19, 2022
- Published electronically: December 16, 2022
- Additional Notes: The first author was supported by the GAČR Grant 18-19087S - 301-13/201843. The second author was supported by the National Science Foundation under grant No. 2127742.
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 1683-1716
- MSC (2020): Primary 12K10, 17A35; Secondary 51A35, 51A40
- DOI: https://doi.org/10.1090/tran/8785
- MathSciNet review: 4549689