## On modified Einstein tensors and two smooth invariants of compact manifolds

HTML articles powered by AMS MathViewer

- by
Mohammed Larbi Labbi
**HTML**| PDF - Trans. Amer. Math. Soc.
**376**(2023), 1717-1738 Request permission

## Abstract:

Let $(M,g)$ be a Riemannian $n$-manifold, we denote by $Ric$ and $Scal$ the Ricci and the scalar curvatures of $g$. For each real number $k<n$, the modified Einstein tensors denoted $\mathrm {Ein}_k$ is defined to be $\mathrm {Ein}_k ≔Scal\, g -kRic$. Note that the usual Einstein tensor coincides with one half of $\mathrm {Ein}_2$ and $\mathrm {Ein}_0=Scal.g$. It turns out that all these new modified tensors, for $0<k<n$, are still gradients of the total scalar curvature functional but with respect to modified integral scalar products. The positivity of $\mathrm {Ein}_k$ for some positive $k$ implies the positivity of all $\mathrm {Ein}_l$ with $0\leq l\leq k$ and so we define a smooth invariant $\mathbf {Ein}(M)$ of $M$ to be the supremum of positive k’s that renders $\mathrm {Ein}_k$ positive. By definition $\mathbf {Ein}(M)\in [0,n]$, it is zero if and only if $M$ has no positive scalar curvature metrics and it is maximal equal to $n$ if $M$ possesses an Einstein metric with positive scalar curvature. In some sense, $\mathbf {Ein}(M)$ measures how far $M$ is away from admitting an Einstein metric of positive scalar curvature.

In this paper, we prove that $\mathbf {Ein}(M)\geq 2$, for any closed simply connected manifold $M$ of positive scalar curvature and with dimension $\geq 5$. Furthermore, for a compact $2$-connected manifold $M$ with dimension $\geq 6$ and of positive scalar curvature, we show that $\mathbf {Ein}(M)\geq 3$. We demonstrate as well that the invariant $\mathbf {Ein} (M)$ of a manifold $M$ increases after doing a surgery on $M$ or by assuming that $M$ has higher connectivity. We show that the condition $\mathbf {Ein}(M)\leq n-2$ does not imply any restriction on the first fundamental group of $M$. We define and prove similar properties for an analogous invariant namely $\mathbf {ein}(M)$. The paper contains several open questions.

## References

- Marcel Berger,
*Riemannian geometry during the second half of the twentieth century*, University Lecture Series, vol. 17, American Mathematical Society, Providence, RI, 2000. Reprint of the 1998 original. MR**1729907**, DOI 10.1090/ulect/017 - Arthur L. Besse,
*Einstein manifolds*, Classics in Mathematics, Springer-Verlag, Berlin, 2008. Reprint of the 1987 edition. MR**2371700** - Dmitry V. Bolotov,
*Gromov’s macroscopic dimension conjecture*, Algebr. Geom. Topol.**6**(2006), 1669–1676. MR**2253461**, DOI 10.2140/agt.2006.6.1669 - Boris Botvinnik and Mohammed Labbi,
*Highly connected manifolds of positive $p$-curvature*, Trans. Amer. Math. Soc.**366**(2014), no. 7, 3405–3424. MR**3192601**, DOI 10.1090/S0002-9947-2014-05939-4 - Boris Botvinnik and Mohammed Labbi,
*Compact manifolds with positive $\Gamma _2$-curvature*, Differential Geom. Appl.**37**(2014), 1–16. MR**3277514**, DOI 10.1016/j.difgeo.2014.09.002 - Jean-Pierre Bourguignon,
*Ricci curvature and Einstein metrics*, Global differential geometry and global analysis (Berlin, 1979) Lecture Notes in Math., vol. 838, Springer, Berlin, 1981, pp. 42–63. MR**636265** - Sun-Yung A. Chang, Matthew J. Gursky, and Paul C. Yang,
*An equation of Monge-Ampère type in conformal geometry, and four-manifolds of positive Ricci curvature*, Ann. of Math. (2)**155**(2002), no. 3, 709–787. MR**1923964**, DOI 10.2307/3062131 - Xiuxiong Chen, Claude Lebrun, and Brian Weber,
*On conformally Kähler, Einstein manifolds*, J. Amer. Math. Soc.**21**(2008), no. 4, 1137–1168. MR**2425183**, DOI 10.1090/S0894-0347-08-00594-8 - L. Gheysens and L. Vanhecke,
*Total scalar curvature of tubes about curves*, Math. Nachr.**103**(1981), 177–197. MR**653921**, DOI 10.1002/mana.19811030113 - Mikhael Gromov and H. Blaine Lawson Jr.,
*The classification of simply connected manifolds of positive scalar curvature*, Ann. of Math. (2)**111**(1980), no. 3, 423–434. MR**577131**, DOI 10.2307/1971103 - Misha Gromov,
*A dozen problems, questions and conjectures about positive scalar curvature*, Foundations of mathematics and physics one century after Hilbert, Springer, Cham, 2018, pp. 135–158. MR**3822551** - M. Gromov,
*Positive curvature, macroscopic dimension, spectral gaps and higher signatures*, Functional analysis on the eve of the 21st century, Vol. II (New Brunswick, NJ, 1993) Progr. Math., vol. 132, Birkhäuser Boston, Boston, MA, 1996, pp. 1–213. MR**1389019**, DOI 10.1007/s10107-010-0354-x - Alfred Gray,
*Tubes*, 2nd ed., Progress in Mathematics, vol. 221, Birkhäuser Verlag, Basel, 2004. With a preface by Vicente Miquel. MR**2024928**, DOI 10.1007/978-3-0348-7966-8 - Sebastian Hoelzel,
*Surgery stable curvature conditions*, Math. Ann.**365**(2016), no. 1-2, 13–47. MR**3498902**, DOI 10.1007/s00208-015-1265-1 - Harold Hotelling,
*Tubes and Spheres in n-Spaces, and a Class of Statistical Problems*, Amer. J. Math.**61**(1939), no. 2, 440–460. MR**1507387**, DOI 10.2307/2371512 - Mohammed-Larbi Labbi,
*Stability of the $p$-curvature positivity under surgeries and manifolds with positive Einstein tensor*, Ann. Global Anal. Geom.**15**(1997), no. 4, 299–312. MR**1472322**, DOI 10.1023/A:1006553611999 - M.-L. Labbi,
*Compact manifolds with positive Einstein curvature*, Geom. Dedicata**108**(2004), 205–217. MR**2112675**, DOI 10.1007/s10711-004-0898-0 - Mohammed-Larbi Labbi,
*Actions des groupes de Lie presque simples et positivité de la $p$-courbure*, Ann. Fac. Sci. Toulouse Math. (6)**6**(1997), no. 2, 263–276 (French, with English and French summaries). MR**1611832**, DOI 10.5802/afst.865 - Mohammed Larbi Labbi,
*Remarks on Bianchi sums and Pontrjagin classes*, J. Aust. Math. Soc.**97**(2014), no. 3, 365–382. MR**3270774**, DOI 10.1017/S1446788714000366 - M. Labbi,
*On two constants of positive conformal classes of Riemannian metrics*, preprint. - H. Blaine Lawson Jr. and Shing Tung Yau,
*Scalar curvature, non-abelian group actions, and the degree of symmetry of exotic spheres*, Comment. Math. Helv.**49**(1974), 232–244. MR**358841**, DOI 10.1007/BF02566731 - D. Page,
*A compact rotating gravitational instanton*, Phys. Let. B,**79**(1978), no. 3, 235–238. - Albert Polombo,
*Nombres caractéristiques d’une variété riemannienne de dimension $4$*, J. Differential Geometry**13**(1978), no. 1, 145–162 (French). MR**520607** - Stephan Stolz,
*Simply connected manifolds of positive scalar curvature*, Ann. of Math. (2)**136**(1992), no. 3, 511–540. MR**1189863**, DOI 10.2307/2946598 - Gang Tian and Shing-Tung Yau,
*Kähler-Einstein metrics on complex surfaces with $C_1>0$*, Comm. Math. Phys.**112**(1987), no. 1, 175–203. MR**904143**, DOI 10.1007/BF01217685 - Wolfson J., The Fundamental Group of Closed Manifolds with Two-positive Ricci Curvature, preprint arXiv:1902.09998 [math.DG].
- J. Wolfson,
*Uryson Width, Asymptotic Dimension and Ricci Curvature*, Preprint, arXiv:2001.02644. - C. T. C. Wall,
*Determination of the cobordism ring*, Ann. of Math. (2)**72**(1960), 292–311. MR**120654**, DOI 10.2307/1970136

## Additional Information

**Mohammed Larbi Labbi**- Affiliation: Department of Mathematics, College of Science, University of Bahrain, 32038, Bahrain
- MR Author ID: 352286
- ORCID: 0000-0003-2960-5372
- Email: mlabbi@uob.edu.bh
- Received by editor(s): February 13, 2022
- Received by editor(s) in revised form: July 25, 2022, and July 27, 2022
- Published electronically: October 28, 2022
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**376**(2023), 1717-1738 - MSC (2020): Primary 53C20, 53C21
- DOI: https://doi.org/10.1090/tran/8791
- MathSciNet review: 4549690