P. Jones’ interpolation theorem for noncommutative martingale Hardy spaces
HTML articles powered by AMS MathViewer
- by Narcisse Randrianantoanina
- Trans. Amer. Math. Soc. 376 (2023), 2089-2124
- DOI: https://doi.org/10.1090/tran/8828
- Published electronically: December 15, 2022
- HTML | PDF | Request permission
Abstract:
Let $\mathcal {M}$ be a semifinite von Nemann algebra equipped with an increasing filtration $(\mathcal {M}_n)_{n\geq 1}$ of (semifinite) von Neumann subalgebras of $\mathcal {M}$. For $0<p \leq \infty$, let $\mathsf {h}_p^c(\mathcal {M})$ denote the noncommutative column conditioned martingale Hardy space associated with the filtration $(\mathcal {M}_n)_{n\geq 1}$ and the index $p$. We prove that for $0<p<\infty$, the compatible couple $\big (\mathsf {h}_p^c(\mathcal {M}), \mathsf {h}_\infty ^c(\mathcal {M})\big )$ is $K$-closed in the couple $\big (L_p(\mathcal {N}), L_\infty (\mathcal {N}) \big )$ for an appropriate amplified semifinite von Neumann algebra $\mathcal {N}\supset \mathcal {M}$. This may be viewed as a noncommutative analogue of P. Jones interpolation of the couple $(H_1, H_\infty )$.
As an application, we prove a general automatic transfer of real interpolation results from couples of symmetric quasi-Banach function spaces to the corresponding couples of noncommutative conditioned martingale Hardy spaces. More precisely, assume that $E$ is a symmetric quasi-Banach function space on $(0, \infty )$ satisfying some natural conditions, $0<\theta <1$, and $0<r\leq \infty$. If $(E,L_\infty )_{\theta ,r}=F$, then \[ \big (\mathsf {h}_E^c(\mathcal {M}), \mathsf {h}_\infty ^c(\mathcal {M})\big )_{\theta , r}=\mathsf {h}_{F}^c(\mathcal {M}). \] As an illustration, we obtain that if $\Phi$ is an Orlicz function that is $p$-convex and $q$-concave for some $0<p\leq q<\infty$, then the following interpolation on the noncommutative column Orlicz-Hardy space holds: for $0<\theta <1$, $0<r\leq \infty$, and $\Phi _0^{-1}(t)=[\Phi ^{-1}(t)]^{1-\theta }$ for $t>0$, \[ \big (\mathsf {h}_\Phi ^c(\mathcal {M}), \mathsf {h}_\infty ^c(\mathcal {M})\big )_{\theta , r}=\mathsf {h}_{\Phi _0, r}^c(\mathcal {M}), \] where $\mathsf {h}_{\Phi _0,r}^c(\mathcal {M})$ is the noncommutative column Hardy space associated with the Orlicz-Lorentz space $L_{\Phi _0,r}$.
References
- Irshaad Ahmed, Georgi E. Karadzhov, and Ali Raza, General Holmstedt’s formulae for the $K$-functional, J. Funct. Spaces , posted on (2017), Art. ID 4958073, 9. MR 3614335, DOI 10.1155/2017/4958073
- Turdebek N. Bekjan and Zeqian Chen, Interpolation and $\Phi$-moment inequalities of noncommutative martingales, Probab. Theory Related Fields 152 (2012), no. 1-2, 179–206. MR 2875756, DOI 10.1007/s00440-010-0319-2
- Turdebek N. Bekjan, Zeqian Chen, Mathilde Perrin, and Zhi Yin, Atomic decomposition and interpolation for Hardy spaces of noncommutative martingales, J. Funct. Anal. 258 (2010), no. 7, 2483–2505. MR 2584751, DOI 10.1016/j.jfa.2009.12.006
- Colin Bennett and Robert Sharpley, Interpolation of operators, Pure and Applied Mathematics, vol. 129, Academic Press, Inc., Boston, MA, 1988. MR 928802
- Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976. MR 482275, DOI 10.1007/978-3-642-66451-9
- Z. Chen, N. Randrianantoanina, and Q. Xu, Atomic decompositions for noncommutative martingales, arXiv:2001.08775v1 [math.OA].
- I. Cuculescu, Martingales on von Neumann algebras, J. Multivariate Anal. 1 (1971), no. 1, 17–27. MR 295398, DOI 10.1016/0047-259X(71)90027-3
- Sjoerd Dirksen, Noncommutative Boyd interpolation theorems, Trans. Amer. Math. Soc. 367 (2015), no. 6, 4079–4110. MR 3324921, DOI 10.1090/S0002-9947-2014-06185-0
- Peter G. Dodds, Theresa K.-Y. Dodds, and Ben de Pagter, Noncommutative Köthe duality, Trans. Amer. Math. Soc. 339 (1993), no. 2, 717–750. MR 1113694, DOI 10.1090/S0002-9947-1993-1113694-3
- Thierry Fack and Hideki Kosaki, Generalized $s$-numbers of $\tau$-measurable operators, Pacific J. Math. 123 (1986), no. 2, 269–300. MR 840845, DOI 10.2140/pjm.1986.123.269
- Zhiwei Hao and Libo Li, Orlicz-Lorentz Hardy martingale spaces, J. Math. Anal. Appl. 482 (2020), no. 1, 123520, 27. MR 4013836, DOI 10.1016/j.jmaa.2019.123520
- Tord Holmstedt, Interpolation of quasi-normed spaces, Math. Scand. 26 (1970), 177–199. MR 415352, DOI 10.7146/math.scand.a-10976
- Svante Janson and Peter W. Jones, Interpolation between $H^{p}$ spaces: the complex method, J. Functional Analysis 48 (1982), no. 1, 58–80. MR 671315, DOI 10.1016/0022-1236(82)90061-1
- Yong Jiao, Martingale inequalities in noncommutative symmetric spaces, Arch. Math. (Basel) 98 (2012), no. 1, 87–97. MR 2885535, DOI 10.1007/s00013-011-0343-1
- Yong Jiao, Narcisse Randrianantoanina, Lian Wu, and Dejian Zhou, Square functions for noncommutative differentially subordinate martingales, Comm. Math. Phys. 374 (2020), no. 2, 975–1019. MR 4072235, DOI 10.1007/s00220-019-03391-x
- Y. Jiao, F. Sukochev, L. Wu, and D. Zanin, Distributional inequalities for noncommutative martingales, arXiv:2103.08847v1, 2021 [math.FA].
- Yong Jiao, Fedor Sukochev, and Dmitriy Zanin, Johnson-Schechtman and Khintchine inequalities in noncommutative probability theory, J. Lond. Math. Soc. (2) 94 (2016), no. 1, 113–140. MR 3532166, DOI 10.1112/jlms/jdw024
- Peter W. Jones, $L^{\infty }$ estimates for the $\bar \partial$ problem in a half-plane, Acta Math. 150 (1983), no. 1-2, 137–152. MR 697611, DOI 10.1007/BF02392970
- Peter W. Jones, On interpolation between $H^{1}$ and $H^{\infty }$, Interpolation spaces and allied topics in analysis (Lund, 1983) Lecture Notes in Math., vol. 1070, Springer, Berlin, 1984, pp. 143–151. MR 760480, DOI 10.1007/BFb0099098
- Marius Junge, Doob’s inequality for non-commutative martingales, J. Reine Angew. Math. 549 (2002), 149–190. MR 1916654, DOI 10.1515/crll.2002.061
- Marius Junge and Magdalena Musat, A noncommutative version of the John-Nirenberg theorem, Trans. Amer. Math. Soc. 359 (2007), no. 1, 115–142. MR 2247885, DOI 10.1090/S0002-9947-06-03999-7
- Marius Junge and Quanhua Xu, Noncommutative Burkholder/Rosenthal inequalities, Ann. Probab. 31 (2003), no. 2, 948–995. MR 1964955, DOI 10.1214/aop/1048516542
- Nigel Kalton and Stephen Montgomery-Smith, Interpolation of Banach spaces, Handbook of the geometry of Banach spaces, Vol. 2, North-Holland, Amsterdam, 2003, pp. 1131–1175. MR 1999193, DOI 10.1016/S1874-5849(03)80033-5
- N. J. Kalton and F. A. Sukochev, Symmetric norms and spaces of operators, J. Reine Angew. Math. 621 (2008), 81–121. MR 2431251, DOI 10.1515/CRELLE.2008.059
- S. V. Kisliakov, Interpolation of $H^p$-spaces: some recent developments, Function spaces, interpolation spaces, and related topics (Haifa, 1995) Israel Math. Conf. Proc., vol. 13, Bar-Ilan Univ., Ramat Gan, 1999, pp. 102–140. MR 1707360
- S. V. Kislyakov and Kuankhua Shu, Real interpolation and singular integrals, Algebra i Analiz 8 (1996), no. 4, 75–109 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 8 (1997), no. 4, 593–615. MR 1418256
- L. Long, H. Tian, and D. Zhou, Interpolation of martingale Orlicz-Hardy spaces, Acta Math. Hungar. 163 (2021), no. 1, 276–294. MR 4217969, DOI 10.1007/s10474-020-01097-4
- Long Long, Ferenc Weisz, and Guangheng Xie, Real interpolation of martingale Orlicz Hardy spaces and BMO spaces, J. Math. Anal. Appl. 505 (2022), no. 2, Paper No. 125565, 23. MR 4300991, DOI 10.1016/j.jmaa.2021.125565
- Lech Maligranda, Orlicz spaces and interpolation, Seminários de Matemática [Seminars in Mathematics], vol. 5, Universidade Estadual de Campinas, Departamento de Matemática, Campinas, 1989. MR 2264389
- Mieczysław Mastyło, The $K$-functional for the quasinormed couples $(A_0,(A_0,A_1)^K_E)$ and $((A_0,A_1)^K_E,A_1)$, Funct. Approx. Comment. Math. 15 (1986), 59–72. MR 880135
- S. J. Montgomery-Smith, Comparison of Orlicz-Lorentz spaces, Studia Math. 103 (1992), no. 2, 161–189. MR 1199324, DOI 10.4064/sm-103-2-161-189
- Magdalena Musat, Interpolation between non-commutative BMO and non-commutative $L_p$-spaces, J. Funct. Anal. 202 (2003), no. 1, 195–225. MR 1994770, DOI 10.1016/S0022-1236(03)00099-5
- Edward Nelson, Notes on non-commutative integration, J. Functional Analysis 15 (1974), 103–116. MR 355628, DOI 10.1016/0022-1236(74)90014-7
- Javier Parcet and Narcisse Randrianantoanina, Gundy’s decomposition for non-commutative martingales and applications, Proc. London Math. Soc. (3) 93 (2006), no. 1, 227–252. MR 2235948, DOI 10.1017/S0024611506015863
- Lars Erik Persson, Interpolation with a parameter function, Math. Scand. 59 (1986), no. 2, 199–222. MR 884656, DOI 10.7146/math.scand.a-12162
- Gilles Pisier, Interpolation between $H^p$ spaces and noncommutative generalizations. I, Pacific J. Math. 155 (1992), no. 2, 341–368. MR 1178030, DOI 10.2140/pjm.1992.155.341
- Gilles Pisier and Quanhua Xu, Non-commutative martingale inequalities, Comm. Math. Phys. 189 (1997), no. 3, 667–698. MR 1482934, DOI 10.1007/s002200050224
- Gilles Pisier and Quanhua Xu, Non-commutative $L^p$-spaces, Handbook of the geometry of Banach spaces, Vol. 2, North-Holland, Amsterdam, 2003, pp. 1459–1517. MR 1999201, DOI 10.1016/S1874-5849(03)80041-4
- Yanqi Qiu, A non-commutative version of Lépingle-Yor martingale inequality, Statist. Probab. Lett. 91 (2014), 52–54. MR 3208115, DOI 10.1016/j.spl.2014.04.007
- N. Randrianantoanina, Interpolation between noncommutative martingale Hardy and BMO spaces: the case $0<p<1$, Canad. J. Math. (2021), Published online.
- Narcisse Randrianantoanina, Non-commutative martingale transforms, J. Funct. Anal. 194 (2002), no. 1, 181–212. MR 1929141
- Narcisse Randrianantoanina and Lian Wu, Martingale inequalities in noncommutative symmetric spaces, J. Funct. Anal. 269 (2015), no. 7, 2222–2253. MR 3378874, DOI 10.1016/j.jfa.2015.05.017
- Narcisse Randrianantoanina and Lian Wu, Noncommutative Burkholder/Rosenthal inequalities associated with convex functions, Ann. Inst. Henri Poincaré Probab. Stat. 53 (2017), no. 4, 1575–1605 (English, with English and French summaries). MR 3729629, DOI 10.1214/16-AIHP764
- Narcisse Randrianantoanina, Lian Wu, and Quanhua Xu, Noncommutative David type decompositions and applications, J. Lond. Math. Soc. (2) 99 (2019), no. 1, 97–126. MR 3909250, DOI 10.1112/jlms.12166
- Narcisse Randrianantoanina, Lian Wu, and Dejian Zhou, Atomic decompositions and asymmetric Doob inequalities in noncommutative symmetric spaces, J. Funct. Anal. 280 (2021), no. 1, Paper No. 108794, 64. MR 4157678, DOI 10.1016/j.jfa.2020.108794
- Yan Bo Ren and Tie Xin Guo, Real interpolation between martingale Hardy and BMO spaces, Acta Math. Sin. (Engl. Ser.) 29 (2013), no. 1, 65–74. MR 3001010, DOI 10.1007/s10114-012-1310-x
- Gunnar Sparr, Interpolation of weighted $L_{p}$-spaces, Studia Math. 62 (1978), no. 3, 229–271. MR 506669, DOI 10.4064/sm-62-3-229-271
- Masamichi Takesaki, Theory of operator algebras. I, Springer-Verlag, New York-Heidelberg, 1979. MR 548728, DOI 10.1007/978-1-4612-6188-9
- M. Takesaki, Theory of operator algebras. II, Encyclopaedia of Mathematical Sciences, vol. 125, Springer-Verlag, Berlin, 2003. Operator Algebras and Non-commutative Geometry, 6. MR 1943006, DOI 10.1007/978-3-662-10451-4
- Ferenc Weisz, Martingale Hardy spaces and their applications in Fourier analysis, Lecture Notes in Mathematics, vol. 1568, Springer-Verlag, Berlin, 1994. MR 1320508, DOI 10.1007/BFb0073448
- Quan Hua Xu, Analytic functions with values in lattices and symmetric spaces of measurable operators, Math. Proc. Cambridge Philos. Soc. 109 (1991), no. 3, 541–563. MR 1094753, DOI 10.1017/S030500410006998X
- Quan Hua Xu, Notes on interpolation of Hardy spaces, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 4, 875–889 (English, with English and French summaries). MR 1196097, DOI 10.5802/aif.1313
- Quan Hua Xu, Some results related to interpolation on Hardy spaces of regular martingales, Israel J. Math. 91 (1995), no. 1-3, 173–187. MR 1348311, DOI 10.1007/BF02761645
Bibliographic Information
- Narcisse Randrianantoanina
- Affiliation: Department of Mathematics, Miami University, Oxford, Ohio 45056
- MR Author ID: 318128
- ORCID: 0000-0003-2031-5846
- Email: randrin@miamioh.edu
- Received by editor(s): January 31, 2022
- Received by editor(s) in revised form: September 12, 2022
- Published electronically: December 15, 2022
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 2089-2124
- MSC (2020): Primary 46L52, 46L53, 46B70; Secondary 46E30, 60G42, 60G48
- DOI: https://doi.org/10.1090/tran/8828
- MathSciNet review: 4549700