Global solutions for the generalized SQG equation and rearrangements
HTML articles powered by AMS MathViewer
- by Daomin Cao, Guolin Qin, Weicheng Zhan and Changjun Zou;
- Trans. Amer. Math. Soc. 376 (2023), 2181-2211
- DOI: https://doi.org/10.1090/tran/8835
- Published electronically: January 4, 2023
- HTML | PDF | Request permission
Abstract:
In this paper, we study the existence of rotating and traveling-wave solutions for the generalized surface quasi-geostrophic (gSQG) equation. The solutions are obtained by maximization of the energy over the set of rearrangements of a fixed function. The rotating solutions take the form of co-rotating vortices with $N$-fold symmetry. The traveling-wave solutions take the form of translating vortex pairs. Moreover, these solutions constitute the desingularization of co-rotating $N$ point vortices and counter-rotating pairs. Some other quantitative properties are also established.References
- Ken Abe and Kyudong Choi, Stability of Lamb dipoles, Arch. Ration. Mech. Anal. 244 (2022), no. 3, 877–917. MR 4419609, DOI 10.1007/s00205-022-01782-4
- Antonio Ambrosetti and Jian Fu Yang, Asymptotic behaviour in planar vortex theory, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 1 (1990), no. 4, 285–291 (English, with Italian summary). MR 1096821
- Weiwei Ao, Juan Dávila, Manuel del Pino, Monica Musso, and Juncheng Wei, Travelling and rotating solutions to the generalized inviscid surface quasi-geostrophic equation, Trans. Amer. Math. Soc. 374 (2021), no. 9, 6665–6689. MR 4302173, DOI 10.1090/tran/8406
- V. I. Arnol′d, On conditions for non-linear stability of plane stationary curvilinear flows of an ideal fluid, Dokl. Akad. Nauk SSSR 162 (1965), 975–978 (Russian). MR 180051
- V. I. Arnol′d, On the topology of three-dimensional steady flows of an ideal fluid, Prikl. Mat. Meh. 30, 183–185 (Russian); English transl., J. Appl. Math. Mech. 30 (1966), 223–226. MR 235578, DOI 10.1016/0021-8928(66)90070-0
- V. I. Arnol′d, An a priori estimate in the theory of hydrodynamic stability, Izv. Vysš. Učebn. Zaved. Matematika 1966 (1966), no. 5(54), 3–5 (Russian). MR 205552
- T. V. Badiani, Existence of steady symmetric vortex pairs on a planar domain with an obstacle, Math. Proc. Cambridge Philos. Soc. 123 (1998), no. 2, 365–384. MR 1490208, DOI 10.1017/S0305004197002041
- T. V. Badiani and G. R. Burton, Vortex rings in ${\Bbb R}^3$ and rearrangements, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 457 (2001), no. 2009, 1115–1135. MR 1861518, DOI 10.1098/rspa.2000.0710
- C. Bardos, Existence et unicité de la solution de l’équation d’Euler en dimension deux, J. Math. Anal. Appl. 40 (1972), 769–790 (French). MR 333488, DOI 10.1016/0022-247X(72)90019-4
- T. Brooke Benjamin, The alliance of practical and analytical insights into the nonlinear problems of fluid mechanics, Applications of methods of functional analysis to problems in mechanics (Joint Sympos., IUTAM/IMU, Marseille, 1975) Lecture Notes in Math., vol. 503, Springer, Berlin-New York, 1976, pp. 8–29. MR 671099
- A. L. Bertozzi and P. Constantin, Global regularity for vortex patches, Comm. Math. Phys. 152 (1993), no. 1, 19–28. MR 1207667, DOI 10.1007/BF02097055
- Haïm Brézis and Elliott Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), no. 3, 486–490. MR 699419, DOI 10.1090/S0002-9939-1983-0699419-3
- Tristan Buckmaster, Steve Shkoller, and Vlad Vicol, Nonuniqueness of weak solutions to the SQG equation, Comm. Pure Appl. Math. 72 (2019), no. 9, 1809–1874. MR 3987721, DOI 10.1002/cpa.21851
- Jacob Burbea, Motions of vortex patches, Lett. Math. Phys. 6 (1982), no. 1, 1–16. MR 646163, DOI 10.1007/BF02281165
- Almut Burchard and Yan Guo, Compactness via symmetrization, J. Funct. Anal. 214 (2004), no. 1, 40–73. MR 2079885, DOI 10.1016/j.jfa.2004.04.005
- G. R. Burton, Rearrangements of functions, maximization of convex functionals, and vortex rings, Math. Ann. 276 (1987), no. 2, 225–253. MR 870963, DOI 10.1007/BF01450739
- G. R. Burton, Steady symmetric vortex pairs and rearrangements, Proc. Roy. Soc. Edinburgh Sect. A 108 (1988), no. 3-4, 269–290. MR 943803, DOI 10.1017/S0308210500014669
- G. R. Burton, Variational problems on classes of rearrangements and multiple configurations for steady vortices, Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (1989), no. 4, 295–319 (English, with French summary). MR 998605, DOI 10.1016/s0294-1449(16)30320-1
- G. R. Burton, Rearrangements of functions, saddle points and uncountable families of steady configurations for a vortex, Acta Math. 163 (1989), no. 3-4, 291–309. MR 1032076, DOI 10.1007/BF02392738
- G. R. Burton, Uniqueness for the circular vortex-pair in a uniform flow, Proc. Roy. Soc. London Ser. A 452 (1996), no. 1953, 2343–2350. MR 1421744, DOI 10.1098/rspa.1996.0125
- G. R. Burton, Isoperimetric properties of Lamb’s circular vortex-pair, J. Math. Fluid Mech. 7 (2005), no. suppl. 1, S68–S80. MR 2126130, DOI 10.1007/s00021-004-0126-6
- G. R. Burton, Global nonlinear stability for steady ideal fluid flow in bounded planar domains, Arch. Ration. Mech. Anal. 176 (2005), no. 2, 149–163. MR 2186035, DOI 10.1007/s00205-004-0339-0
- G. R. Burton, Compactness and stability for planar vortex-pairs with prescribed impulse, J. Differential Equations 270 (2021), 547–572. MR 4150383, DOI 10.1016/j.jde.2020.08.009
- Geoffrey R. Burton, Helena J. Nussenzveig Lopes, and Milton C. Lopes Filho, Nonlinear stability for steady vortex pairs, Comm. Math. Phys. 324 (2013), no. 2, 445–463. MR 3117517, DOI 10.1007/s00220-013-1806-y
- G. R. Burton and J. F. Toland, Surface waves on steady perfect-fluid flows with vorticity, Comm. Pure Appl. Math. 64 (2011), no. 7, 975–1007. MR 2828587, DOI 10.1002/cpa.20365
- Daomin Cao, Shanfa Lai, and Weicheng Zhan, Traveling vortex pairs for 2D incompressible Euler equations, Calc. Var. Partial Differential Equations 60 (2021), no. 5, Paper No. 190, 16. MR 4295232, DOI 10.1007/s00526-021-02068-5
- Daomin Cao, Jie Wan, and Weicheng Zhan, Desingularization of vortex rings in 3 dimensional Euler flows, J. Differential Equations 270 (2021), 1258–1297. MR 4152780, DOI 10.1016/j.jde.2020.09.014
- Daomin Cao, Guodong Wang, and Weicheng Zhan, Desingularization of vortices for two-dimensional steady Euler flows via the vorticity method, SIAM J. Math. Anal. 52 (2020), no. 6, 5363–5388. MR 4169262, DOI 10.1137/19M1292151
- Daomin Cao, Guolin Qin, Weicheng Zhan, and Changjun Zou, On the global classical solutions for the generalized SQG equation, J. Funct. Anal. 283 (2022), no. 2, Paper No. 109503, 37. MR 4406410, DOI 10.1016/j.jfa.2022.109503
- Angel Castro, Diego Córdoba, and Javier Gómez-Serrano, Existence and regularity of rotating global solutions for the generalized surface quasi-geostrophic equations, Duke Math. J. 165 (2016), no. 5, 935–984. MR 3482335, DOI 10.1215/00127094-3449673
- Angel Castro, Diego Córdoba, and Javier Gómez-Serrano, Uniformly rotating analytic global patch solutions for active scalars, Ann. PDE 2 (2016), no. 1, Art. 1, 34. MR 3462104, DOI 10.1007/s40818-016-0007-3
- Angel Castro, Diego Córdoba, and Javier Gómez-Serrano, Uniformly rotating smooth solutions for the incompressible 2D Euler equations, Arch. Ration. Mech. Anal. 231 (2019), no. 2, 719–785. MR 3900813, DOI 10.1007/s00205-018-1288-3
- Angel Castro, Diego Córdoba, and Javier Gómez-Serrano, Global smooth solutions for the inviscid SQG equation, Mem. Amer. Math. Soc. 266 (2020), no. 1292, v+89. MR 4126257, DOI 10.1090/memo/1292
- Dongho Chae, The quasi-geostrophic equation in the Triebel-Lizorkin spaces, Nonlinearity 16 (2003), no. 2, 479–495. MR 1958612, DOI 10.1088/0951-7715/16/2/307
- Dongho Chae, Peter Constantin, Diego Córdoba, Francisco Gancedo, and Jiahong Wu, Generalized surface quasi-geostrophic equations with singular velocities, Comm. Pure Appl. Math. 65 (2012), no. 8, 1037–1066. MR 2928091, DOI 10.1002/cpa.21390
- Hardy Chan, María del Mar González, Yanghong Huang, Edoardo Mainini, and Bruno Volzone, Uniqueness of entire ground states for the fractional plasma problem, Calc. Var. Partial Differential Equations 59 (2020), no. 6, Paper No. 195, 42. MR 4169049, DOI 10.1007/s00526-020-01845-y
- Jean-Yves Chemin, Perfect incompressible fluids, Oxford Lecture Series in Mathematics and its Applications, vol. 14, The Clarendon Press, Oxford University Press, New York, 1998. Translated from the 1995 French original by Isabelle Gallagher and Dragos Iftimie. MR 1688875
- Kyudong Choi and In-Jee Jeong, Infinite growth in vorticity gradient of compactly supported planar vorticity near Lamb dipole, Nonlinear Anal. Real World Appl. 65 (2022), Paper No. 103470, 20. MR 4350517, DOI 10.1016/j.nonrwa.2021.103470
- Peter Constantin, Andrew J. Majda, and Esteban Tabak, Formation of strong fronts in the $2$-D quasigeostrophic thermal active scalar, Nonlinearity 7 (1994), no. 6, 1495–1533. MR 1304437, DOI 10.1088/0951-7715/7/6/001
- Diego Cordoba, Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation, Ann. of Math. (2) 148 (1998), no. 3, 1135–1152. MR 1670077, DOI 10.2307/121037
- Diego Cordoba and Charles Fefferman, Growth of solutions for QG and 2D Euler equations, J. Amer. Math. Soc. 15 (2002), no. 3, 665–670. MR 1896236, DOI 10.1090/S0894-0347-02-00394-6
- Diego Córdoba, Marco A. Fontelos, Ana M. Mancho, and Jose L. Rodrigo, Evidence of singularities for a family of contour dynamics equations, Proc. Natl. Acad. Sci. USA 102 (2005), no. 17, 5949–5952. MR 2141918, DOI 10.1073/pnas.0501977102
- G. S. Deem and N. J. Zabusky, Vortex waves: stationary “V-states” interactions, recurrence, and breaking, Phys. Rev. Lett. 40 (1978), no. 13, 859–862, \DOI{10.1103/PhysRevLett.40.859}.
- Justin Dekeyser, Asymptotic of steady vortex pair in the lake equation, SIAM J. Math. Anal. 51 (2019), no. 2, 1209–1237. MR 3936897, DOI 10.1137/18M1170169
- Justin Dekeyser, Desingularization of a steady vortex pair in the lake equation, Potential Anal. 56 (2022), no. 1, 97–135. MR 4357733, DOI 10.1007/s11118-020-09878-w
- Francisco de la Hoz, Zineb Hassainia, and Taoufik Hmidi, Doubly connected V-states for the generalized surface quasi-geostrophic equations, Arch. Ration. Mech. Anal. 220 (2016), no. 3, 1209–1281. MR 3466846, DOI 10.1007/s00205-015-0953-z
- Francisco de la Hoz, Taoufik Hmidi, Joan Mateu, and Joan Verdera, Doubly connected $V$-states for the planar Euler equations, SIAM J. Math. Anal. 48 (2016), no. 3, 1892–1928. MR 3507551, DOI 10.1137/140992801
- Jean-Marc Delort, Existence de nappes de tourbillon en dimension deux, J. Amer. Math. Soc. 4 (1991), no. 3, 553–586 (French). MR 1102579, DOI 10.1090/S0894-0347-1991-1102579-6
- Ronald J. DiPerna and Andrew J. Majda, Concentrations in regularizations for $2$-D incompressible flow, Comm. Pure Appl. Math. 40 (1987), no. 3, 301–345. MR 882068, DOI 10.1002/cpa.3160400304
- R. J. Douglas, Rearrangements of functions on unbounded domains, Proc. Roy. Soc. Edinburgh Sect. A 124 (1994), no. 4, 621–644. MR 1298584, DOI 10.1017/S0308210500028572
- David Gerard Dritschel, Taoufik Hmidi, and Coralie Renault, Imperfect bifurcation for the quasi-geostrophic shallow-water equations, Arch. Ration. Mech. Anal. 231 (2019), no. 3, 1853–1915. MR 3902477, DOI 10.1007/s00205-018-1312-7
- Tarek M. Elgindi and In-Jee Jeong, Symmetries and critical phenomena in fluids, Comm. Pure Appl. Math. 73 (2020), no. 2, 257–316. MR 4054357, DOI 10.1002/cpa.21829
- Alan R. Elcrat and Kenneth G. Miller, Rearrangements in steady vortex flows with circulation, Proc. Amer. Math. Soc. 111 (1991), no. 4, 1051–1055. MR 1043409, DOI 10.1090/S0002-9939-1991-1043409-2
- Alan R. Elcrat and Kenneth G. Miller, Rearrangements in steady multiple vortex flows, Comm. Partial Differential Equations 20 (1995), no. 9-10, 1481–1490. MR 1349221, DOI 10.1080/03605309508821141
- Alan R. Elcrat and Octavian Neculoiu, Continuity of the profile function of a steady ideal vortex flow, Advances in geometric analysis and continuum mechanics (Stanford, CA, 1993) Int. Press, Cambridge, MA, 1995, pp. 74–80. MR 1356729
- Francisco Gancedo, Existence for the $\alpha$-patch model and the QG sharp front in Sobolev spaces, Adv. Math. 217 (2008), no. 6, 2569–2598. MR 2397460, DOI 10.1016/j.aim.2007.10.010
- Claudia García, Taoufik Hmidi, and Juan Soler, Non uniform rotating vortices and periodic orbits for the two-dimensional Euler equations, Arch. Ration. Mech. Anal. 238 (2020), no. 2, 929–1085. MR 4134155, DOI 10.1007/s00205-020-01561-z
- Claudia García, Vortex patches choreography for active scalar equations, J. Nonlinear Sci. 31 (2021), no. 5, Paper No. 75, 31. MR 4284365, DOI 10.1007/s00332-021-09729-x
- Ludovic Godard-Cadillac, Smooth traveling-wave solutions to the inviscid surface quasi-geostrophic equations, C. R. Math. Acad. Sci. Paris 359 (2021), 85–98. MR 4229041, DOI 10.5802/crmath.159
- L. Godard-Cadillac, P. Gravejat, and D. Smets, Co-rotating vortices with $N$ fold symmetry for the inviscid surface quasi-geostrophic equation, arXiv:2010.08194.
- Javier Gómez-Serrano, Jaemin Park, Jia Shi, and Yao Yao, Symmetry in stationary and uniformly rotating solutions of active scalar equations, Duke Math. J. 170 (2021), no. 13, 2957–3038. MR 4312192, DOI 10.1215/00127094-2021-0002
- Philippe Gravejat and Didier Smets, Smooth travelling-wave solutions to the inviscid surface quasi-geostrophic equation, Int. Math. Res. Not. IMRN 6 (2019), 1744–1757. MR 3932594, DOI 10.1093/imrn/rnx177
- Zineb Hassainia, Nader Masmoudi, and Miles H. Wheeler, Global bifurcation of rotating vortex patches, Comm. Pure Appl. Math. 73 (2020), no. 9, 1933–1980. MR 4156612, DOI 10.1002/cpa.21855
- Zineb Hassainia and Taoufik Hmidi, On the V-states for the generalized quasi-geostrophic equations, Comm. Math. Phys. 337 (2015), no. 1, 321–377. MR 3324164, DOI 10.1007/s00220-015-2300-5
- Siming He and Alexander Kiselev, Small-scale creation for solutions of the SQG equation, Duke Math. J. 170 (2021), no. 5, 1027–1041. MR 4255049, DOI 10.1215/00127094-2020-0064
- Isaac M. Held, Raymond T. Pierrehumbert, Stephen T. Garner, and Kyle L. Swanson, Surface quasi-geostrophic dynamics, J. Fluid Mech. 282 (1995), 1–20. MR 1312238, DOI 10.1017/S0022112095000012
- Taoufik Hmidi, Joan Mateu, and Joan Verdera, Boundary regularity of rotating vortex patches, Arch. Ration. Mech. Anal. 209 (2013), no. 1, 171–208. MR 3054601, DOI 10.1007/s00205-013-0618-8
- Taoufik Hmidi and Joan Mateu, Degenerate bifurcation of the rotating patches, Adv. Math. 302 (2016), 799–850. MR 3545942, DOI 10.1016/j.aim.2016.07.022
- Taoufik Hmidi and Joan Mateu, Bifurcation of rotating patches from Kirchhoff vortices, Discrete Contin. Dyn. Syst. 36 (2016), no. 10, 5401–5422. MR 3543554, DOI 10.3934/dcds.2016038
- Taoufik Hmidi and Joan Mateu, Existence of corotating and counter-rotating vortex pairs for active scalar equations, Comm. Math. Phys. 350 (2017), no. 2, 699–747. MR 3607460, DOI 10.1007/s00220-016-2784-7
- G. Kirchhoff, Vorlesungen uber mathematische Physik, Leipzig, 1874.
- Alexander Kiselev and Fedor Nazarov, A simple energy pump for the surface quasi-geostrophic equation, Nonlinear partial differential equations, Abel Symp., vol. 7, Springer, Heidelberg, 2012, pp. 175–179. MR 3289364, DOI 10.1007/978-3-642-25361-4_{9}
- Alexander Kiselev, Lenya Ryzhik, Yao Yao, and Andrej Zlatoš, Finite time singularity for the modified SQG patch equation, Ann. of Math. (2) 184 (2016), no. 3, 909–948. MR 3549626, DOI 10.4007/annals.2016.184.3.7
- Alexander Kiselev, Yao Yao, and Andrej Zlatoš, Local regularity for the modified SQG patch equation, Comm. Pure Appl. Math. 70 (2017), no. 7, 1253–1315. MR 3666567, DOI 10.1002/cpa.21677
- L. G. Kurakin and V. I. Yudovich, The stability of stationary rotation of a regular vortex polygon, Chaos 12 (2002), no. 3, 574–595. MR 1939453, DOI 10.1063/1.1482175
- H. Lamb, Hydrodynamics, Cambridge University Press, Cambridge, 3rd ed. (1906).
- G. Lapeyre, Surface quasi-geostrophy, Fluids $\boldsymbol {2}$ (2017), https://doi.org/10.3390/fluids2010007.
- Dong Li, Existence theorems for the 2D quasi-geostrophic equation with plane wave initial conditions, Nonlinearity 22 (2009), no. 7, 1639–1651. MR 2519682, DOI 10.1088/0951-7715/22/7/008
- Elliott H. Lieb and Michael Loss, Analysis, 2nd ed., Graduate Studies in Mathematics, vol. 14, American Mathematical Society, Providence, RI, 2001. MR 1817225, DOI 10.1090/gsm/014
- C. C. Lin, On the motion of vortices in two dimensions. I. Existence of the Kirchhoff-Routh function, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 570–575. MR 6281, DOI 10.1073/pnas.27.12.570
- C. C. Lin, On the motion of vortices in two dimensions. II. Some further investigations on the Kirchhoff-Routh function, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 575–577. MR 6282, DOI 10.1073/pnas.27.12.575
- Andrew J. Majda and Andrea L. Bertozzi, Vorticity and incompressible flow, Cambridge Texts in Applied Mathematics, vol. 27, Cambridge University Press, Cambridge, 2002. MR 1867882
- Fabien Marchand, Existence and regularity of weak solutions to the quasi-geostrophic equations in the spaces $L^p$ or $\dot H^{-1/2}$, Comm. Math. Phys. 277 (2008), no. 1, 45–67. MR 2357424, DOI 10.1007/s00220-007-0356-6
- Carlo Marchioro and Mario Pulvirenti, Mathematical theory of incompressible nonviscous fluids, Applied Mathematical Sciences, vol. 96, Springer-Verlag, New York, 1994. MR 1245492, DOI 10.1007/978-1-4612-4284-0
- V. V. Meleshko and G. J. F. van Heijst, On Chaplygin’s investigations of two-dimensional vortex structures in an inviscid fluid, J. Fluid Mech. 272 (1994), 157–182. MR 1289112, DOI 10.1017/S0022112094004428
- Andrea R. Nahmod, Nataša Pavlović, Gigliola Staffilani, and Nathan Totz, Global flows with invariant measures for the inviscid modified SQG equations, Stoch. Partial Differ. Equ. Anal. Comput. 6 (2018), no. 2, 184–210. MR 3818404, DOI 10.1007/s40072-017-0106-5
- Paul K. Newton, The $N$-vortex problem, Applied Mathematical Sciences, vol. 145, Springer-Verlag, New York, 2001. Analytical techniques. MR 1831715, DOI 10.1007/978-1-4684-9290-3
- J. Norbury, Steady planar vortex pairs in an ideal fluid, Comm. Pure Appl. Math. 28 (1975), no. 6, 679–700. MR 399645, DOI 10.1002/cpa.3160280602
- H. C. Pocklington, The configuration of a pair of equal and opposite hollow and straight vortices of finite cross-section, moving steadily through fluid, Proc. Camb. Philos. Soc. $\boldsymbol {8}$ (1895) 178–187.
- Serge G. Resnick, Dynamical problems in non-linear advective partial differential equations, ProQuest LLC, Ann Arbor, MI, 1995. Thesis (Ph.D.)–The University of Chicago. MR 2716577
- José Luis Rodrigo, On the evolution of sharp fronts for the quasi-geostrophic equation, Comm. Pure Appl. Math. 58 (2005), no. 6, 821–866. MR 2142632, DOI 10.1002/cpa.20059
- Matthew Rosenzweig, Justification of the point vortex approximation for modified surface quasi-geostrophic equations, SIAM J. Math. Anal. 52 (2020), no. 2, 1690–1728. MR 4083342, DOI 10.1137/19M1262620
- Didier Smets and Jean Van Schaftingen, Desingularization of vortices for the Euler equation, Arch. Ration. Mech. Anal. 198 (2010), no. 3, 869–925. MR 2729322, DOI 10.1007/s00205-010-0293-y
- W. Thomson (Lord Kelvin), Maximum and minimum energy in vortex motion, Mathematical and Physical Papers, vol. 4, Cambridge University Press, 1910, pp. 172–183.
- B. Turkington, On steady vortex flow in two dimensions. I, II, Comm. Partial Differential Equations $\boldsymbol {8}$ (1983), 999–1030, 1031–1071 https://doi.org/10.1080/03605308308820293, https://doi.org/10.1080/03605308308820294.
- Bruce Turkington, Corotating steady vortex flows with $N$-fold symmetry, Nonlinear Anal. 9 (1985), no. 4, 351–369. MR 783583, DOI 10.1016/0362-546X(85)90059-8
- Y. H. Wan and M. Pulvirenti, Nonlinear stability of circular vortex patches, Comm. Math. Phys. 99 (1985), no. 3, 435–450. MR 795112, DOI 10.1007/BF01240356
- Jiahong Wu, Quasi-geostrophic-type equations with initial data in Morrey spaces, Nonlinearity 10 (1997), no. 6, 1409–1420. MR 1483549, DOI 10.1088/0951-7715/10/6/002
- Jiahong Wu, Solutions of the 2D quasi-geostrophic equation in Hölder spaces, Nonlinear Anal. 62 (2005), no. 4, 579–594. MR 2149903, DOI 10.1016/j.na.2005.03.053
- Jian Fu Yang, Existence and asymptotic behavior in planar vortex theory, Math. Models Methods Appl. Sci. 1 (1991), no. 4, 461–475. MR 1144183, DOI 10.1142/S021820259100023X
- Huan Yu, Xiaoxin Zheng, and Quansen Jiu, Remarks on well-posedness of the generalized surface quasi-geostrophic equation, Arch. Ration. Mech. Anal. 232 (2019), no. 1, 265–301. MR 3916975, DOI 10.1007/s00205-018-1320-7
- V. I. Judovič, Non-stationary flows of an ideal incompressible fluid, Ž. Vyčisl. Mat i Mat. Fiz. 3 (1963), 1032–1066 (Russian). MR 158189
Bibliographic Information
- Daomin Cao
- Affiliation: Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China; and University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- MR Author ID: 261647
- Email: dmcao@amt.ac.cn
- Guolin Qin
- Affiliation: Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China; and University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- ORCID: 0000-0003-1870-3970
- Email: qinguolin18@mails.ucas.ac.cn
- Weicheng Zhan
- Affiliation: School of Mathematical Sciences, Xiamen University, Xiamen, Fujian, 361005, People’s Republic of China
- ORCID: 0000-0002-5975-8364
- Email: zhanweicheng@amss.ac.cn
- Changjun Zou
- Affiliation: Department of Mathematics, Sichuan University, Chengdu, Sichuan, 610064, People’s Republic of China
- MR Author ID: 1450513
- ORCID: 0000-0003-1201-6686
- Email: zouchangjun@scu.edu.cn
- Received by editor(s): May 24, 2021
- Received by editor(s) in revised form: June 8, 2022, and September 22, 2022
- Published electronically: January 4, 2023
- Additional Notes: This work was supported by NNSF of China Grants 11831009, 12201525, and CPSF Grants 2022M722286
The fourth author is the corresponding author - © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 2181-2211
- MSC (2020): Primary 76B47
- DOI: https://doi.org/10.1090/tran/8835
- MathSciNet review: 4549703