On the structure of Besse convex contact spheres
HTML articles powered by AMS MathViewer
- by Marco Mazzucchelli and Marco Radeschi;
- Trans. Amer. Math. Soc. 376 (2023), 2125-2153
- DOI: https://doi.org/10.1090/tran/8836
- Published electronically: December 15, 2022
- HTML | PDF | Request permission
Abstract:
We consider convex contact spheres $Y$ all of whose Reeb orbits are closed. Any such $Y$ admits a stratification by the periods of closed Reeb orbits. We show that $Y$ “resembles” a contact ellipsoid: any stratum of $Y$ is an integral homology sphere, and the sequence of Ekeland-Hofer spectral invariants of $Y$ coincides with the full sequence of action values, each one repeated according to its multiplicity.References
- Alberto Abbondandolo, Barney Bramham, Umberto L. Hryniewicz, and Pedro A. S. Salomão, A systolic inequality for geodesic flows on the two-sphere, Math. Ann. 367 (2017), no. 1-2, 701–753. MR 3606452, DOI 10.1007/s00208-016-1385-2
- Alberto Abbondandolo and Jungsoo Kang, Symplectic homology of convex domains and Clarke’s duality, Duke Math. J. 171 (2022), no. 3, 739–830. MR 4382979, DOI 10.1215/00127094-2021-0025
- Arthur L. Besse, Manifolds all of whose geodesics are closed, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 93, Springer-Verlag, Berlin-New York, 1978. With appendices by D. B. A. Epstein, J.-P. Bourguignon, L. Bérard-Bergery, M. Berger and J. L. Kazdan. MR 496885, DOI 10.1007/978-3-642-61876-5
- Glen E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR 413144
- W. M. Boothby and H. C. Wang, On contact manifolds, Ann. of Math. (2) 68 (1958), 721–734. MR 112160, DOI 10.2307/1970165
- Daniel Cristofaro-Gardiner and Marco Mazzucchelli, The action spectrum characterizes closed contact 3-manifolds all of whose Reeb orbits are closed, Comment. Math. Helv. 95 (2020), no. 3, 461–481. MR 4152621, DOI 10.4171/CMH/493
- Frank H. Clarke, A classical variational principle for periodic Hamiltonian trajectories, Proc. Amer. Math. Soc. 76 (1979), no. 1, 186–188. MR 534415, DOI 10.1090/S0002-9939-1979-0534415-7
- I. Ekeland and H. Hofer, Convex Hamiltonian energy surfaces and their periodic trajectories, Comm. Math. Phys. 113 (1987), no. 3, 419–469. MR 925924, DOI 10.1007/BF01221255
- I. Ekeland and H. Hofer, Symplectic topology and Hamiltonian dynamics, Math. Z. 200 (1989), no. 3, 355–378. MR 978597, DOI 10.1007/BF01215653
- Ivar Ekeland and Helmut Hofer, Symplectic topology and Hamiltonian dynamics. II, Math. Z. 203 (1990), no. 4, 553–567. MR 1044064, DOI 10.1007/BF02570756
- Ivar Ekeland, Convexity methods in Hamiltonian mechanics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 19, Springer-Verlag, Berlin, 1990. MR 1051888, DOI 10.1007/978-3-642-74331-3
- Edward R. Fadell and Paul H. Rabinowitz, Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Invent. Math. 45 (1978), no. 2, 139–174. MR 478189, DOI 10.1007/BF01390270
- Detlef Gromoll and Karsten Grove, On metrics on $S^{2}$ all of whose geodesics are closed, Invent. Math. 65 (1981/82), no. 1, 175–177. MR 636885, DOI 10.1007/BF01389300
- Viktor L. Ginzburg, Başak Z. Gürel, and Marco Mazzucchelli, On the spectral characterization of Besse and Zoll Reeb flows, Ann. Inst. H. Poincaré C Anal. Non Linéaire 38 (2021), no. 3, 549–576. MR 4227045, DOI 10.1016/j.anihpc.2020.08.004
- Hansjörg Geiges and Christian Lange, Seifert fibrations of lens spaces, Abh. Math. Semin. Univ. Hambg. 88 (2018), no. 1, 1–22. MR 3785783, DOI 10.1007/s12188-017-0188-z
- Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. MR 1867354
- K. Irie, Symplectic homology capacity of convex bodies and loop space homology, arXiv:1907.09749, 2019.
- Samuel Lin and Benjamin Schmidt, Real projective spaces with all geodesics closed, Geom. Funct. Anal. 27 (2017), no. 3, 631–636. MR 3655958, DOI 10.1007/s00039-017-0407-x
- Marco Mazzucchelli and Stefan Suhr, A characterization of Zoll Riemannian metrics on the 2-sphere, Bull. Lond. Math. Soc. 50 (2018), no. 6, 997–1006. MR 3891938, DOI 10.1112/blms.12200
- Marco Mazzucchelli and Stefan Suhr, A min-max characterization of Zoll Riemannian metrics, Math. Proc. Cambridge Philos. Soc. 172 (2022), no. 3, 591–615. MR 4416570, DOI 10.1017/s0305004121000311
- Christian Pries, Geodesics closed on the projective plane, Geom. Funct. Anal. 18 (2009), no. 5, 1774–1785. MR 2481742, DOI 10.1007/s00039-008-0682-7
- Marco Radeschi and Burkhard Wilking, On the Berger conjecture for manifolds all of whose geodesics are closed, Invent. Math. 210 (2017), no. 3, 911–962. MR 3735632, DOI 10.1007/s00222-017-0742-4
- Reinhard Schultz, Differentiability and the P. A. Smith theorems for spheres. I. Actions of prime order groups, Current trends in algebraic topology, Part 2 (London, Ont., 1981) CMS Conf. Proc., vol. 2, Amer. Math. Soc., Providence, RI, 1982, pp. 235–273. MR 686149
- J.-C. Sikorav, Systèmes hamiltoniens et topologie symplectique, ETS Editrice, Pisa, 1990.
- Clifford Henry Taubes, The Seiberg-Witten and Gromov invariants, Math. Res. Lett. 2 (1995), no. 2, 221–238. MR 1324704, DOI 10.4310/MRL.1995.v2.n2.a10
- Benjamin Texier, Basic matrix perturbation theory, Enseign. Math. 64 (2018), no. 3-4, 249–263. MR 3987143, DOI 10.4171/LEM/64-3/4-1
- C. B. Thomas, Almost regular contact manifolds, J. Differential Geometry 11 (1976), no. 4, 521–533. MR 464261, DOI 10.4310/jdg/1214433722
- Ilya Ustilovsky, Infinitely many contact structures on $S^{4m+1}$, Internat. Math. Res. Notices 14 (1999), 781–791. MR 1704176, DOI 10.1155/S1073792899000392
- A. W. Wadsley, Geodesic foliations by circles, J. Differential Geometry 10 (1975), no. 4, 541–549. MR 400257, DOI 10.4310/jdg/1214433160
Bibliographic Information
- Marco Mazzucchelli
- Affiliation: CNRS, UMPA, École Normale Supérieure de Lyon, 69364 Lyon, France
- MR Author ID: 832298
- ORCID: 0000-0003-3782-6079
- Email: marco.mazzucchelli@ens-lyon.fr
- Marco Radeschi
- Affiliation: Department of Mathematics, University of Notre Dame, Indiana 46556
- MR Author ID: 1079099
- ORCID: 0000-0001-6167-7136
- Email: mradesch@nd.edu
- Received by editor(s): September 18, 2021
- Received by editor(s) in revised form: September 13, 2022
- Published electronically: December 15, 2022
- © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 2125-2153
- MSC (2020): Primary 53D10, 58E05
- DOI: https://doi.org/10.1090/tran/8836
- MathSciNet review: 4549701