Wheeling around Mazur rotations problem
HTML articles powered by AMS MathViewer
- by Félix Cabello Sánchez;
- Trans. Amer. Math. Soc. 376 (2023), 2213-2235
- DOI: https://doi.org/10.1090/tran/8829
- Published electronically: January 4, 2023
- HTML | PDF | Request permission
Abstract:
We study Mazur rotations problem focusing on the metric aspects of the action of the isometry group and semitransitivity properties.References
- María D. Acosta, Mieczysław Mastyło, and Maryam Soleimani-Mourchehkhorti, The Bishop-Phelps-Bollobás and approximate hyperplane series properties, J. Funct. Anal. 274 (2018), no. 9, 2673–2699. MR 3771840, DOI 10.1016/j.jfa.2017.09.008
- Jonathan Arazy, An application of infinite-dimensional holomorphy to the geometry of Banach spaces, Geometrical aspects of functional analysis (1985/86), Lecture Notes in Math., vol. 1267, Springer, Berlin, 1987, pp. 122–150. MR 907690, DOI 10.1007/BFb0078141
- R. M. Aron, C. Finet, and E. Werner, Some remarks on norm-attaining $n$-linear forms, Function spaces (Edwardsville, IL, 1994) Lecture Notes in Pure and Appl. Math., vol. 172, Dekker, New York, 1995, pp. 19–28. MR 1352216
- N. Aronszajn, Differentiability of Lipschitzian mappings between Banach spaces, Studia Math. 57 (1976), no. 2, 147–190. MR 425608, DOI 10.4064/sm-57-2-147-190
- S. Banach, Théorie des Operations linéaires (French) [Theory of linear operators], Monografie Matematyczne 1, Inst. Mat. Polskiej Akad. Nauk, Warszawa 1932; freely available at the Polish Digital Mathematical Library on http://pldml.icm.edu.pl Reprinted by Chelsea Publishing Co., New York, 1955 and Éditions Jacques Gabay, Sceaux, 1993.
- Julio Becerra Guerrero and Angel Rodriguez Palacios, Transitivity of the norm on Banach spaces having a Jordan structure, Manuscripta Math. 102 (2000), no. 1, 111–127. MR 1771231, DOI 10.1007/s002291020111
- Julio Becerra Guerrero and A. Rodríguez-Palacios, Transitivity of the norm on Banach spaces, Extracta Math. 17 (2002), no. 1, 1–58. MR 1914238
- Julio Becerra Guerrero and Ángel Rodríguez Palacios, Banach spaces with a large semigroup of contractive automorphisms, J. Math. Anal. Appl. 475 (2019), no. 1, 642–667. MR 3944339, DOI 10.1016/j.jmaa.2019.02.061
- Julio Becerra Guerrero, Angel Rodríguez-Palacios, and Geoffrey V. Wood, Banach spaces whose algebras of operators are unitary: a holomorphic approach, Bull. London Math. Soc. 35 (2003), no. 2, 218–224. MR 1952398, DOI 10.1112/S0024609302001856
- Yoav Benyamini and Joram Lindenstrauss, Geometric nonlinear functional analysis. Vol. 1, American Mathematical Society Colloquium Publications, vol. 48, American Mathematical Society, Providence, RI, 2000. MR 1727673, DOI 10.1090/coll/048
- F. Cabello Sánchez, 10 variaciones sobre un tema de Mazur, Tesis Doctoral, Universidad de Extremadura, 1996.
- Félix Cabello Sánchez, Maximal symmetric norms on Banach spaces, Math. Proc. R. Ir. Acad. 98A (1998), no. 2, 121–130. MR 1759425
- Félix Cabello Sánchez, Sheldon Dantas, Vladimir Kadets, Sun Kwang Kim, Han Ju Lee, and Miguel Martín, On Banach spaces whose group of isometries acts micro-transitively on the unit sphere, J. Math. Anal. Appl. 488 (2020), no. 1, 124046, 14. MR 4079379, DOI 10.1016/j.jmaa.2020.124046
- Félix Cabello Sánchez, Valentin Ferenczi, and Beata Randrianantoanina, On Mazur rotations problem and its multidimensional versions, São Paulo J. Math. Sci. 16 (2022), no. 1, 406–458. MR 4426402, DOI 10.1007/s40863-021-00234-3
- Miguel Cabrera García and Ángel Rodríguez Palacios, Non-associative normed algebras. Vol. 2, Encyclopedia of Mathematics and its Applications, vol. 167, Cambridge University Press, Cambridge, 2018. Representation theory and the Zel’manov approach. MR 3791798, DOI 10.1017/9781107337817
- Henri Cartan, Calcul différentiel, Hermann, Paris, 1967 (French). MR 223194
- Robert Deville, Gilles Godefroy, and Václav Zizler, Smoothness and renormings in Banach spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 64, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1993. MR 1211634
- S. J. Dilworth and B. Randrianantoanina, On an isomorphic Banach-Mazur rotation problem and maximal norms in Banach spaces, J. Funct. Anal. 268 (2015), no. 6, 1587–1611. MR 3306357, DOI 10.1016/j.jfa.2014.11.021
- Edward G. Effros, Transformation groups and $C^{\ast }$-algebras, Ann. of Math. (2) 81 (1965), 38–55. MR 174987, DOI 10.2307/1970381
- M. Fabián, Lipschitz smooth points of convex functions and isomorphic characterizations of Hilbert spaces, Proc. London Math. Soc. (3) 51 (1985), no. 1, 113–126. MR 788852, DOI 10.1112/plms/s3-51.1.113
- Valentin Ferenczi and Christian Rosendal, On isometry groups and maximal symmetry, Duke Math. J. 162 (2013), no. 10, 1771–1831. MR 3079260, DOI 10.1215/00127094-2322898
- Valentin Ferenczi and Christian Rosendal, Non-unitarisable representations and maximal symmetry, J. Inst. Math. Jussieu 16 (2017), no. 2, 421–445. MR 3615413, DOI 10.1017/S1474748015000195
- Catherine Finet, Uniform convexity properties of norms on a super-reflexive Banach space, Israel J. Math. 53 (1986), no. 1, 81–92. MR 861899, DOI 10.1007/BF02772671
- Peter Greim, James E. Jamison, and Anna Kamińska, Almost transitivity of some function spaces, Math. Proc. Cambridge Philos. Soc. 116 (1994), no. 3, 475–488. MR 1291754, DOI 10.1017/S0305004100072753
- Bence Horváth and Tomasz Kania, Unital Banach algebras not isomorphic to Calkin algebras of separable Banach spaces, Proc. Amer. Math. Soc. 149 (2021), no. 11, 4781–4787. MR 4310103, DOI 10.1090/proc/15589
- S. Ivanov, Stack Exchange, MathOverflow, https://mathoverflow.net/questions/130310/a-characterization-of-hilbert-spaces
- Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597, DOI 10.1007/978-1-4612-4190-4
- Piotr Mankiewicz, On the differentiability of Lipschitz mappings in Fréchet spaces, Studia Math. 45 (1973), 15–29. MR 331055, DOI 10.4064/sm-45-1-15-29
- O. Massicot, Stack Exchange, Mathematics, https://math.stackexchange.com/questions/3352933/hessian-matrix-in-cylindrical-coordinate-basis
- Jan van Mill, A note on the Effros theorem, Amer. Math. Monthly 111 (2004), no. 9, 801–806. MR 2104051, DOI 10.2307/4145191
- Vitali D. Milman and Gideon Schechtman, Asymptotic theory of finite-dimensional normed spaces, Lecture Notes in Mathematics, vol. 1200, Springer-Verlag, Berlin, 1986. With an appendix by M. Gromov. MR 856576
- Włodzimierz Odyniec and Grzegorz Lewicki, Minimal projections in Banach spaces, Lecture Notes in Mathematics, vol. 1449, Springer-Verlag, Berlin, 1990. Problems of existence and uniqueness and their application. MR 1079547, DOI 10.1007/BFb0094527
- Albrecht Pietsch, Inessential operators in Banach spaces, Integral Equations Operator Theory 1 (1978), no. 4, 589–591. MR 516770, DOI 10.1007/BF01682943
- Gilles Pisier, Holomorphic semigroups and the geometry of Banach spaces, Ann. of Math. (2) 115 (1982), no. 2, 375–392. MR 647811, DOI 10.2307/1971396
- S. K. Tarasov, Banach spaces with a homogeneous ball, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 5 (1988), 62–64 (Russian); English transl., Moscow Univ. Math. Bull. 43 (1988), no. 5, 70–73. MR 1051183
- W. Wojtyński, Banach spaces in which the isometries act transitively on the unit sphere, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 22 (1974), 925–929 (English, with Russian summary). MR 399814
Bibliographic Information
- Félix Cabello Sánchez
- Affiliation: Departamento de Matemáticas and IMUEx, Universidad de Extremadura, Avenida de Elvas, 06071-Badajoz, España. Orcid Id: 0000-0003-0924-5189
- ORCID: 0000-0003-0924-5189
- Email: fcabello@unex.es
- Received by editor(s): March 2, 2022
- Received by editor(s) in revised form: October 3, 2022
- Published electronically: January 4, 2023
- Additional Notes: The author was supported in part by PID2019-103961GB-C21 and Junta de Extremadura, Project IB16056.
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 2213-2235
- MSC (2020): Primary 46B03, 46B04, 46C15
- DOI: https://doi.org/10.1090/tran/8829
- MathSciNet review: 4549704