The mapping class group of connect sums of $S^2 \times S^1$
HTML articles powered by AMS MathViewer
- by Tara Brendle, Nathan Broaddus and Andrew Putman;
- Trans. Amer. Math. Soc. 376 (2023), 2557-2572
- DOI: https://doi.org/10.1090/tran/8758
- Published electronically: January 24, 2023
- HTML | PDF | Request permission
Abstract:
Let $M_n$ be the connect sum of $n$ copies of $S^2 \times S^1$. A classical theorem of Laudenbach says that the mapping class group $\operatorname {Mod}(M_n)$ is an extension of $\operatorname {Out}(F_n)$ by a group $(\mathbb {Z}/2)^n$ generated by sphere twists. We prove that this extension splits, so $\operatorname {Mod}(M_n)$ is the semidirect product of $\operatorname {Out}(F_n)$ by $(\mathbb {Z}/2)^n$, which $\operatorname {Out}(F_n)$ acts on via the dual of the natural surjection $\operatorname {Out}(F_n) \rightarrow GL_n(\mathbb {Z}/2)$. Our splitting takes $\operatorname {Out}(F_n)$ to the subgroup of $\operatorname {Mod}(M_n)$ consisting of mapping classes that fix the homotopy class of a trivialization of the tangent bundle of $M_n$. Our techniques also simplify various aspects of Laudenbach’s original proof, including the identification of the twist subgroup with $(\mathbb {Z}/2)^n$.References
- Javier Aramayona and Juan Souto, Automorphisms of the graph of free splittings, Michigan Math. J. 60 (2011), no. 3, 483–493. MR 2861084, DOI 10.1307/mmj/1320763044
- Jean Cerf, Sur les difféomorphismes de la sphère de dimension trois $(\Gamma _{4}=0)$, Lecture Notes in Mathematics, No. 53, Springer-Verlag, Berlin-New York, 1968 (French). MR 229250, DOI 10.1007/BFb0060395
- Matt Clay, Yulan Qing, and Kasra Rafi, Uniform fellow traveling between surgery paths in the sphere graph, Algebr. Geom. Topol. 17 (2017), no. 6, 3751–3778. MR 3709659, DOI 10.2140/agt.2017.17.3751
- Diarmuid J. Crowley, On the mapping class groups of $\#_r(S^p\times S^p)$ for $p=3,7$, Math. Z. 269 (2011), no. 3-4, 1189–1199. MR 2860283, DOI 10.1007/s00209-010-0777-3
- John L. Friedman and Donald M. Witt, Homotopy is not isotopy for homeomorphisms of $3$-manifolds, Topology 25 (1986), no. 1, 35–44. MR 836722, DOI 10.1016/0040-9383(86)90003-0
- Herman Gluck, The embedding of two-spheres in the four-sphere, Trans. Amer. Math. Soc. 104 (1962), 308–333. MR 146807, DOI 10.1090/S0002-9947-1962-0146807-0
- Ursula Hamenstädt and Sebastian Hensel, Spheres and projections for $\textrm {Out}(F_n)$, J. Topol. 8 (2015), no. 1, 65–92. MR 3335249, DOI 10.1112/jtopol/jtu015
- Michael Handel and Lee Mosher, The free splitting complex of a free group, I: hyperbolicity, Geom. Topol. 17 (2013), no. 3, 1581–1672. MR 3073931, DOI 10.2140/gt.2013.17.1581
- Allen E. Hatcher, A proof of the Smale conjecture, $\textrm {Diff}(S^{3})\simeq \textrm {O}(4)$, Ann. of Math. (2) 117 (1983), no. 3, 553–607. MR 701256, DOI 10.2307/2007035
- Allen Hatcher, Homological stability for automorphism groups of free groups, Comment. Math. Helv. 70 (1995), no. 1, 39–62. MR 1314940, DOI 10.1007/BF02565999
- Allen Hatcher and Karen Vogtmann, The complex of free factors of a free group, Quart. J. Math. Oxford Ser. (2) 49 (1998), no. 196, 459–468. MR 1660045, DOI 10.1093/qjmath/49.196.459
- Allen Hatcher and Nathalie Wahl, Stabilization for mapping class groups of 3-manifolds, Duke Math. J. 155 (2010), no. 2, 205–269. MR 2736166, DOI 10.1215/00127094-2010-055
- Harrie Hendriks, Applications de la théorie d’obstruction en dimension $3$, Bull. Soc. Math. France Mém. 53 (1977), 81–196 (French). MR 474305, DOI 10.24033/msmf.237
- Arnaud Hilion and Camille Horbez, The hyperbolicity of the sphere complex via surgery paths, J. Reine Angew. Math. 730 (2017), 135–161. MR 3692016, DOI 10.1515/crelle-2014-0128
- Camille Horbez, Sphere paths in outer space, Algebr. Geom. Topol. 12 (2012), no. 4, 2493–2517. MR 3020214, DOI 10.2140/agt.2012.12.2493
- Ilya Kapovich and Martin Lustig, Geometric intersection number and analogues of the curve complex for free groups, Geom. Topol. 13 (2009), no. 3, 1805–1833. MR 2496058, DOI 10.2140/gt.2009.13.1805
- Manuel Krannich, Mapping class groups of highly connected $(4k+2)$-manifolds, Selecta Math. (N.S.) 26 (2020), no. 5, Paper No. 81, 49. MR 4182837, DOI 10.1007/s00029-020-00600-7
- Nikolai A. Krylov, On the Jacobi group and the mapping class group of $S^3\times S^3$, Trans. Amer. Math. Soc. 355 (2003), no. 1, 99–117. MR 1928079, DOI 10.1090/S0002-9947-02-03051-9
- A. Kupers, Lectures on diffeomorphism groups of manifolds, preprint. https://people.math.harvard.edu/~kupers/teaching/272x/book.pdf
- F. Laudenbach, Sur les $2$-sphères d’une variété de dimension $3$, Ann. of Math. (2) 97 (1973), 57–81 (French). MR 314054, DOI 10.2307/1970877
- François Laudenbach, Topologie de la dimension trois: homotopie et isotopie, Astérisque, No. 12, Société Mathématique de France, Paris, 1974 (French). With an English summary and table of contents. MR 356056
- Roger C. Lyndon and Paul E. Schupp, Combinatorial group theory, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1977 edition. MR 1812024, DOI 10.1007/978-3-642-61896-3
- Jakob Nielsen, Die Isomorphismengruppe der freien Gruppen, Math. Ann. 91 (1924), no. 3-4, 169–209 (German). MR 1512188, DOI 10.1007/BF01556078
- L. Pontrjagin, A classification of mappings of the three-dimensional complex into the two-dimensional sphere, Rec. Math. [Mat. Sbornik] N.S. 9(51) (1941), 331–363 (English, with Russian summary). MR 4780
- J. H. C. Whitehead, On Certain Sets of Elements in a Free Group, Proc. London Math. Soc. (2) 41 (1936), no. 1, 48–56. MR 1575455, DOI 10.1112/plms/s2-41.1.48
- J. H. C. Whitehead, On equivalent sets of elements in a free group, Ann. of Math. (2) 37 (1936), no. 4, 782–800. MR 1503309, DOI 10.2307/1968618
Bibliographic Information
- Tara Brendle
- Affiliation: School of Mathematics & Statistics, University of Glasgow, University Place, Glasgow G12 8QQ, UK
- MR Author ID: 683339
- ORCID: 0000-0002-9594-8229
- Email: tara.brendle@glasgow.ac.uk
- Nathan Broaddus
- Affiliation: Department of Mathematics, Ohio State University, 231 W. 18th Ave., Columbus, Ohio 43210
- ORCID: 0000-0003-2054-2627
- Email: broaddus.9@osu.edu
- Andrew Putman
- Affiliation: Department of Mathematics, University of Notre Dame, 255 Hurley Hall, Notre Dame, Indiana 46556
- MR Author ID: 794071
- Email: andyp@nd.edu
- Received by editor(s): January 12, 2022
- Received by editor(s) in revised form: May 24, 2022
- Published electronically: January 24, 2023
- Additional Notes: Supported in part by NSF grant DMS-1811210
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 2557-2572
- MSC (2020): Primary 57S05, 20F34; Secondary 20E36
- DOI: https://doi.org/10.1090/tran/8758
- MathSciNet review: 4557874