Towards van der Waerden’s conjecture
HTML articles powered by AMS MathViewer
- by Sam Chow and Rainer Dietmann;
- Trans. Amer. Math. Soc. 376 (2023), 2739-2785
- DOI: https://doi.org/10.1090/tran/8784
- Published electronically: January 24, 2023
- HTML | PDF | Request permission
Abstract:
How often is a quintic polynomial solvable by radicals? We establish that the number of such polynomials, monic and irreducible with integer coefficients in $[-H,H]$, is $O(H^{3.91})$. More generally, we show that if $n \geqslant 3$ and $n \notin \{ 7, 8, 10 \}$ then there are $O(H^{n-1.017})$ monic, irreducible polynomials of degree $n$ with integer coefficients in $[-H,H]$ and Galois group not containing $A_n$. Save for the alternating group and degrees $7,8,10$, this establishes a 1936 conjecture of van der Waerden.References
- L. Bary-Soroker, D. Koukoulopoulos, and G. Kozma, Irreducibility of random polynomials: general measures, arXiv:2007.14567.
- Lior Bary-Soroker and Gady Kozma, Irreducible polynomials of bounded height, Duke Math. J. 169 (2020), no. 4, 579–598. MR 4072635, DOI 10.1215/00127094-2019-0047
- Cristina Bertone, Guillaume Chèze, and André Galligo, Modular Las Vegas algorithms for polynomial absolute factorization, J. Symbolic Comput. 45 (2010), no. 12, 1280–1295. MR 2733379, DOI 10.1016/j.jsc.2010.06.010
- Manjul Bhargava, The density of discriminants of quartic rings and fields, Ann. of Math. (2) 162 (2005), no. 2, 1031–1063. MR 2183288, DOI 10.4007/annals.2005.162.1031
- M. Bhargava, Galois groups of random integer polynomials and van der Waerden’s conjecture, arXiv:2111.06507.
- Manjul Bhargava and Arul Shankar, Binary quartic forms having bounded invariants, and the boundedness of the average rank of elliptic curves, Ann. of Math. (2) 181 (2015), no. 1, 191–242. MR 3272925, DOI 10.4007/annals.2015.181.1.3
- M. Bhargava, A. Shankar, T. Taniguchi, F. Thorne, J. Tsimerman, and Y. Zhao, Bounds on 2-torsion in class groups of number fields and integral points on elliptic curves, J. Amer. Math. Soc. 33 (2020), no. 4, 1087–1099. MR 4155220, DOI 10.1090/jams/945
- E. Bombieri and J. Pila, The number of integral points on arcs and ovals, Duke Math. J. 59 (1989), no. 2, 337–357. MR 1016893, DOI 10.1215/S0012-7094-89-05915-2
- Emmanuel Breuillard and Péter P. Varjú, Irreducibility of random polynomials of large degree, Acta Math. 223 (2019), no. 2, 195–249. MR 4047924, DOI 10.4310/acta.2019.v223.n2.a1
- T. D. Browning, Power-free values of polynomials, Arch. Math. (Basel) 96 (2011), no. 2, 139–150. MR 2773215, DOI 10.1007/s00013-011-0224-7
- T. D. Browning and D. R. Heath-Brown, Plane curves in boxes and equal sums of two powers, Math. Z. 251 (2005), no. 2, 233–247. MR 2191024, DOI 10.1007/s00209-004-0719-z
- Gregory Butler and John McKay, The transitive groups of degree up to eleven, Comm. Algebra 11 (1983), no. 8, 863–911. MR 695893, DOI 10.1080/00927878308822884
- R. Chela, Reducible polynomials, J. London Math. Soc. 38 (1963), 183–188. MR 148647, DOI 10.1112/jlms/s1-38.1.183
- Abel Castillo and Rainer Dietmann, On Hilbert’s irreducibility theorem, Acta Arith. 180 (2017), no. 1, 1–14. MR 3693563, DOI 10.4064/aa8380-2-2017
- Sam Chow and Rainer Dietmann, Enumerative Galois theory for cubics and quartics, Adv. Math. 372 (2020), 107282, 37. MR 4128571, DOI 10.1016/j.aim.2020.107282
- S. Chow and N. Technau, Littlewood and Duffin–Schaeffer-type problems in diophantine approximation, Mem. Amer. Math. Soc., To appear, arXiv:2010.09069.
- Stephen D. Cohen, Uniform distribution of polynomials over finite fields, J. London Math. Soc. (2) 6 (1972), 93–102. MR 309906, DOI 10.1112/jlms/s2-6.1.93
- S. D. Cohen, The Galois group of a polynomial with two indeterminate coefficients, Pacific J. Math. 90 (1980), no. 1, 63–76. MR 599320, DOI 10.2140/pjm.1980.90.63
- S. D. Cohen, The distribution of Galois groups and Hilbert’s irreducibility theorem, Proc. London Math. Soc. (3) 43 (1981), no. 2, 227–250. MR 628276, DOI 10.1112/plms/s3-43.2.227
- P. M. Cohn, Algebraic numbers and algebraic functions, Chapman and Hall Mathematics Series, Chapman & Hall, London, 1991. MR 1140705, DOI 10.1007/978-1-4899-3444-4
- David A. Cox, Galois theory, 2nd ed., Pure and Applied Mathematics (Hoboken), John Wiley & Sons, Inc., Hoboken, NJ, 2012. MR 2919975, DOI 10.1002/9781118218457
- David A. Cox, John Little, and Donal O’Shea, Ideals, varieties, and algorithms, 4th ed., Undergraduate Texts in Mathematics, Springer, Cham, 2015. An introduction to computational algebraic geometry and commutative algebra. MR 3330490, DOI 10.1007/978-3-319-16721-3
- Rainer Dietmann, On the distribution of Galois groups, Mathematika 58 (2012), no. 1, 35–44. MR 2891158, DOI 10.1112/S0025579311002105
- Rainer Dietmann, Probabilistic Galois theory, Bull. Lond. Math. Soc. 45 (2013), no. 3, 453–462. MR 3065016, DOI 10.1112/blms/bds113
- R. Dietmann, A. Ostafe, and I. E. Shparlinski, Discriminants of fields generated by polynomials of given height, Israel J. Math., To appear, arXiv:1909.00135.
- S. Eberhard, The characteristic polynomial of a random matrix, Combinatorica (2022), 1–37.
- P. X. Gallagher, The large sieve and probabilistic Galois theory, Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972) Proc. Sympos. Pure Math., Vol. XXIV, Amer. Math. Soc., Providence, RI, 1973, pp. 91–101. MR 332694
- Thomas R. Hagedorn, General formulas for solving solvable sextic equations, J. Algebra 233 (2000), no. 2, 704–757. MR 1793923, DOI 10.1006/jabr.2000.8428
- D. R. Heath-Brown, The density of rational points on curves and surfaces, Ann. of Math. (2) 155 (2002), no. 2, 553–595. MR 1906595, DOI 10.2307/3062125
- D. R. Heath-Brown, Counting rational points on algebraic varieties, Analytic number theory, Lecture Notes in Math., vol. 1891, Springer, Berlin, 2006, pp. 51–95. MR 2277658, DOI 10.1007/978-3-540-36364-4_{2}
- David Hilbert, Ueber die Irreducibilität ganzer rationaler Functionen mit ganzzahligen Coefficienten, J. Reine Angew. Math. 110 (1892), 104–129 (German). MR 1580277, DOI 10.1515/crll.1892.110.104
- F. Jouve, E. Kowalski, and D. Zywina, Splitting fields of characteristic polynomials of random elements in arithmetic groups, Israel J. Math. 193 (2013), no. 1, 263–307. MR 3038553, DOI 10.1007/s11856-012-0117-x
- Hans-Wilhelm Knobloch, Die Seltenheit der reduziblen Polynome, Jber. Deutsch. Math.-Verein. 59 (1956), no. Abt. 1, 12–19 (German). MR 80071
- Aaron Landesman, Robert J. Lemke Oliver, and Frank Thorne, Improved lower bounds for the number of fields with alternating Galois group, Bull. Lond. Math. Soc. 53 (2021), no. 4, 1159–1173. MR 4311826, DOI 10.1112/blms.12490
- Phyllis Lefton, On the Galois groups of cubics and trinomials, Acta Arith. 35 (1979), no. 3, 239–246. MR 550295, DOI 10.4064/aa-35-3-239-246
- Robert J. Lemke Oliver and Frank Thorne, Upper bounds on polynomials with small Galois group, Mathematika 66 (2020), no. 4, 1054–1059. MR 4151870, DOI 10.1112/mtk.12050
- Huy Tuan Pham and Max Wenqiang Xu, Irreducibility of random polynomials of bounded degree, Discrete Anal. , posted on (2021), Paper No. 7, 16. MR 4293328, DOI 10.19086/da
- J. Pila, Density of integral and rational points on varieties, Astérisque 228 (1995), 4, 183–187. Columbia University Number Theory Seminar (New York, 1992). MR 1330933
- Igor Rivin, Walks on groups, counting reducible matrices, polynomials, and surface and free group automorphisms, Duke Math. J. 142 (2008), no. 2, 353–379. MR 2401624, DOI 10.1215/00127094-2008-009
- Wolfgang M. Schmidt, Equations over finite fields. An elementary approach, Lecture Notes in Mathematics, Vol. 536, Springer-Verlag, Berlin-New York, 1976. MR 429733, DOI 10.1007/BFb0080437
- Wolfgang M. Schmidt, Northcott’s theorem on heights. II. The quadratic case, Acta Arith. 70 (1995), no. 4, 343–375. MR 1330740, DOI 10.4064/aa-70-4-343-375
- John Howard Smith, General trinomials having symmetric Galois group, Proc. Amer. Math. Soc. 63 (1977), no. 2, 208–212. MR 437508, DOI 10.1090/S0002-9939-1977-0437508-6
- Richard P. Stauduhar, The determination of Galois groups, Math. Comp. 27 (1973), 981–996. MR 327712, DOI 10.1090/S0025-5718-1973-0327712-4
- Kôji Uchida, Galois group of an equation $X^{n}-aX+b=0$, Tohoku Math. J. (2) 22 (1970), 670–678. MR 277505, DOI 10.2748/tmj/1178242731
- B. L. van der Waerden, Die Seltenheit der reduziblen Gleichungen und der Gleichungen mit Affekt, Monatsh. Math. Phys. 43 (1936), no. 1, 133–147 (German). MR 1550517, DOI 10.1007/BF01707594
- Wolfram Research, Inc., Mathematica, version 12.3, Champaign, IL, 2021.
- Siman Wong, Densities of quartic fields with even Galois groups, Proc. Amer. Math. Soc. 133 (2005), no. 10, 2873–2881. MR 2159764, DOI 10.1090/S0002-9939-05-07921-9
- Stanley Yao Xiao, On monic abelian cubics, Compos. Math. 158 (2022), no. 3, 550–567. MR 4423393, DOI 10.1112/s0010437x22007369
- D. Zywina, Hilbert’s irreducibility theorem and the larger sieve, arXiv:1011.6465.
Bibliographic Information
- Sam Chow
- Affiliation: Mathematics Institute, Zeeman Building, University of Warwick, Coventry CV4 7AL, United Kingdom
- MR Author ID: 1077989
- ORCID: 0000-0001-7651-4831
- Email: Sam.Chow@warwick.ac.uk
- Rainer Dietmann
- Affiliation: Department of Mathematics, Royal Holloway, University of London, Egham TW20 0EX, United Kingdom
- MR Author ID: 667217
- Email: Rainer.Dietmann@rhul.ac.uk
- Received by editor(s): July 12, 2021
- Received by editor(s) in revised form: April 27, 2022, and August 2, 2022
- Published electronically: January 24, 2023
- Additional Notes: The first author was supported by EPSRC Fellowship Grant EP/S00226X/2, and by the Swedish Research Council under grant no. 2016-06596.
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 2739-2785
- MSC (2020): Primary 11R32; Secondary 11C08, 11D45, 11G35
- DOI: https://doi.org/10.1090/tran/8784
- MathSciNet review: 4557880