The eigensplitting of the fiber of the cyclotomic trace for the sphere spectrum
HTML articles powered by AMS MathViewer
- by Andrew J. Blumberg and Michael A. Mandell;
- Trans. Amer. Math. Soc. 376 (2023), 2853-2874
- DOI: https://doi.org/10.1090/tran/8822
- Published electronically: December 16, 2022
- HTML | PDF | Request permission
Abstract:
Let $p\in {\mathbb {Z}}$ be an odd prime. We show that the fiber sequence for the cyclotomic trace of the sphere spectrum ${\mathbb {S}}$ admits an “eigensplitting” that generalizes known splittings on $K$-theory and $TC$. We identify the summands in the fiber as the covers of ${\mathbb {Z}}_{p}$-Anderson duals of summands in the $K(1)$-localized algebraic $K$-theory of ${\mathbb {Z}}$. Analogous results hold for the ring ${\mathbb {Z}}$ where we prove that the $K(1)$-localized fiber sequence is self-dual for ${\mathbb {Z}}_{p}$-Anderson duality, with the duality permuting the summands by $i\mapsto p-i$ (indexed mod $p-1$). We explain an intrinsic characterization of the summand we call $Z$ in the splitting $TC({\mathbb {Z}})^{\wedge }_{p}\simeq j \vee \Sigma j’\vee Z$ in terms of units in the $p$-cyclotomic tower of ${\mathbb {Q}}_{p}$.References
- D. W. Anderson, Universal coefficient theorems for $K$-theory, Mimeographed notes.
- Andrew J. Blumberg and Michael A. Mandell, The nilpotence theorem for the algebraic $K$-theory of the sphere spectrum, Geom. Topol. 21 (2017), no. 6, 3453–3466. MR 3692970, DOI 10.2140/gt.2017.21.3453
- Andrew J. Blumberg and Michael A. Mandell, The homotopy groups of the algebraic $K$-theory of the sphere spectrum, Geom. Topol. 23 (2019), no. 1, 101–134. MR 3921317, DOI 10.2140/gt.2019.23.101
- Andrew J. Blumberg and Michael A. Mandell, $K$-theoretic Tate-Poitou duality and the fiber of the cyclotomic trace, Invent. Math. 221 (2020), no. 2, 397–419. MR 4121155, DOI 10.1007/s00222-020-00952-z
- J. Coates and R. Sujatha, Cyclotomic fields and zeta values, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2006. MR 2256969
- J. Coates and A. Wiles, On $p$-adic $L$-functions and elliptic units, J. Austral. Math. Soc. Ser. A 26 (1978), no. 1, 1–25. MR 510581, DOI 10.1017/S1446788700011459
- Robert F. Coleman, Division values in local fields, Invent. Math. 53 (1979), no. 2, 91–116. MR 560409, DOI 10.1007/BF01390028
- Robert F. Coleman, The arithmetic of Lubin-Tate division towers, Duke Math. J. 48 (1981), no. 2, 449–466. MR 620259
- Ethan S. Devinatz and Michael J. Hopkins, Homotopy fixed point spectra for closed subgroups of the Morava stabilizer groups, Topology 43 (2004), no. 1, 1–47. MR 2030586, DOI 10.1016/S0040-9383(03)00029-6
- W. G. Dwyer and S. A. Mitchell, On the $K$-theory spectrum of a ring of algebraic integers, $K$-Theory 14 (1998), no. 3, 201–263. MR 1633505, DOI 10.1023/A:1007792408694
- Lars Hesselholt and Ib Madsen, On the $K$-theory of finite algebras over Witt vectors of perfect fields, Topology 36 (1997), no. 1, 29–101. MR 1410465, DOI 10.1016/0040-9383(96)00003-1
- Kenkichi Iwasawa, On $p$-adic $L$-functions, Ann. of Math. (2) 89 (1969), 198–205. MR 269627, DOI 10.2307/1970817
- Karlheinz Knapp, Anderson duality in $K$-theory and $\textrm {Im}(J)$-theory, $K$-Theory 18 (1999), no. 2, 137–159. MR 1711716, DOI 10.1023/A:1007763715735
- Serge Lang, Cyclotomic fields I and II, 2nd ed., Graduate Texts in Mathematics, vol. 121, Springer-Verlag, New York, 1990. With an appendix by Karl Rubin. MR 1029028, DOI 10.1007/978-1-4612-0987-4
- J. S. Milne, Arithmetic duality theorems, 2nd ed., BookSurge, LLC, Charleston, SC, 2006. MR 2261462
- Stephen A. Mitchell, On $p$-adic topological $K$-theory, Algebraic $K$-theory and algebraic topology (Lake Louise, AB, 1991) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 407, Kluwer Acad. Publ., Dordrecht, 1993, pp. 197–204. MR 1367298, DOI 10.1007/978-94-017-0695-7_{9}
- Jürgen Neukirch, Alexander Schmidt, and Kay Wingberg, Cohomology of number fields, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 323, Springer-Verlag, Berlin, 2008. MR 2392026, DOI 10.1007/978-3-540-37889-1
- Daniel Quillen, On the cohomology and $K$-theory of the general linear groups over a finite field, Ann. of Math. (2) 96 (1972), 552–586. MR 315016, DOI 10.2307/1970825
- John Rognes, The smooth Whitehead spectrum of a point at odd regular primes, Geom. Topol. 7 (2003), 155–184. MR 1988283, DOI 10.2140/gt.2003.7.155
- A. Saikia, A simple proof of a lemma of Coleman, Math. Proc. Cambridge Philos. Soc. 130 (2001), no. 2, 209–220. MR 1806773, DOI 10.1017/S0305004100004953
- J.-P. Serre, Local class field theory, Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965) Academic Press, London, 1967, pp. 128–161. MR 220701
- Jean-Pierre Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg. MR 554237, DOI 10.1007/978-1-4757-5673-9
- R. W. Thomason, Algebraic $K$-theory and étale cohomology, Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 3, 437–552. MR 826102, DOI 10.24033/asens.1495
Bibliographic Information
- Andrew J. Blumberg
- Affiliation: Department of Mathematics, Columbia University, New York, New York 10027
- MR Author ID: 648837
- Email: blumberg@math.columbia.edu
- Michael A. Mandell
- Affiliation: Department of Mathematics, Indiana University, Bloomington, Indiana 47405
- MR Author ID: 601045
- ORCID: 0000-0001-8442-3876
- Email: mmandell@indiana.edu
- Received by editor(s): February 16, 2022
- Received by editor(s) in revised form: August 4, 2022, and September 12, 2022
- Published electronically: December 16, 2022
- Additional Notes: The first author was supported in part by NSF grants DMS-1812064, DMS-2104420
The second author was supported in part by NSF grants DMS-1811820, DMS-2104348 - © Copyright 2022 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 2853-2874
- MSC (2020): Primary 19D10, 19D55, 19F05
- DOI: https://doi.org/10.1090/tran/8822
- MathSciNet review: 4557883