Frobenius-Perron theory for projective schemes
HTML articles powered by AMS MathViewer
- by J. M. Chen, Z. B. Gao, E. Wicks, J. J. Zhang, X. H. Zhang and H. Zhu;
- Trans. Amer. Math. Soc. 376 (2023), 2293-2324
- DOI: https://doi.org/10.1090/tran/8624
- Published electronically: January 18, 2023
- HTML | PDF | Request permission
Abstract:
The Frobenius-Perron theory of an endofunctor of a $\Bbbk$-linear category (recently introduced in Chen et al. [Algebra Number Theory 13 (2019), pp. 2005–2055]) provides new invariants for abelian and triangulated categories. Here we study Frobenius-Perron type invariants for derived categories of commutative and noncommutative projective schemes. In particular, we calculate the Frobenius-Perron dimension for domestic and tubular weighted projective lines, define Frobenius-Perron generalizations of Calabi-Yau and Kodaira dimensions, and provide examples. We apply this theory to the derived categories associated to certain Artin-Schelter regular and finite-dimensional algebras.References
- Michael Artin and William F. Schelter, Graded algebras of global dimension $3$, Adv. in Math. 66 (1987), no. 2, 171–216. MR 917738, DOI 10.1016/0001-8708(87)90034-X
- M. Artin and J. J. Zhang, Noncommutative projective schemes, Adv. Math. 109 (1994), no. 2, 228–287. MR 1304753, DOI 10.1006/aima.1994.1087
- I. Assem, D. Simson and A. Skowroński, Elements of the representation theory of associative algebras, Vol. 1. Techniques of representation theory. London Mathematical Society Student Texts, 65. Cambridge University Press, Cambridge, 2006.
- I. N. Bernšteĭn, I. M. Gel′fand, and V. A. Ponomarev, Coxeter functors, and Gabriel’s theorem, Uspehi Mat. Nauk 28 (1973), no. 2(170), 19–33 (Russian). MR 393065
- Alexei Bondal and Dmitri Orlov, Reconstruction of a variety from the derived category and groups of autoequivalences, Compositio Math. 125 (2001), no. 3, 327–344. MR 1818984, DOI 10.1023/A:1002470302976
- A. Bondal and M. van den Bergh, Generators and representability of functors in commutative and noncommutative geometry, Mosc. Math. J. 3 (2003), no. 1, 1–36, 258 (English, with English and Russian summaries). MR 1996800, DOI 10.17323/1609-4514-2003-3-1-1-36
- Kristian Brüning and Igor Burban, Coherent sheaves on an elliptic curve, Interactions between homotopy theory and algebra, Contemp. Math., vol. 436, Amer. Math. Soc., Providence, RI, 2007, pp. 297–315. MR 2355779, DOI 10.1090/conm/436/08414
- Jianmin Chen, Zhibin Gao, Elizabeth Wicks, James J. Zhang, Xiaohong Zhang, and Hong Zhu, Frobenius-Perron theory of endofunctors, Algebra Number Theory 13 (2019), no. 9, 2005–2055. MR 4039495, DOI 10.2140/ant.2019.13.2005
- Pavel Etingof, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik, Tensor categories, Mathematical Surveys and Monographs, vol. 205, American Mathematical Society, Providence, RI, 2015. MR 3242743, DOI 10.1090/surv/205
- Pavel Etingof, Shlomo Gelaki, and Viktor Ostrik, Classification of fusion categories of dimension $pq$, Int. Math. Res. Not. 57 (2004), 3041–3056. MR 2098028, DOI 10.1155/S1073792804131206
- Pavel Etingof, Dmitri Nikshych, and Viktor Ostrik, On fusion categories, Ann. of Math. (2) 162 (2005), no. 2, 581–642. MR 2183279, DOI 10.4007/annals.2005.162.581
- Werner Geigle and Helmut Lenzing, A class of weighted projective curves arising in representation theory of finite-dimensional algebras, Singularities, representation of algebras, and vector bundles (Lambrecht, 1985) Lecture Notes in Math., vol. 1273, Springer, Berlin, 1987, pp. 265–297. MR 915180, DOI 10.1007/BFb0078849
- Dieter Happel, On the derived category of a finite-dimensional algebra, Comment. Math. Helv. 62 (1987), no. 3, 339–389. MR 910167, DOI 10.1007/BF02564452
- Lutz Hille and Markus Perling, Exceptional sequences of invertible sheaves on rational surfaces, Compos. Math. 147 (2011), no. 4, 1230–1280. MR 2822868, DOI 10.1112/S0010437X10005208
- Bernhard Keller, On triangulated orbit categories, Doc. Math. 10 (2005), 551–581. MR 2184464, DOI 10.4171/dm/199
- Bernhard Keller, Derived categories and tilting, Handbook of tilting theory, London Math. Soc. Lecture Note Ser., vol. 332, Cambridge Univ. Press, Cambridge, 2007, pp. 49–104. MR 2384608, DOI 10.1017/CBO9780511735134.005
- Dirk Kussin, Helmut Lenzing, and Hagen Meltzer, Triangle singularities, ADE-chains, and weighted projective lines, Adv. Math. 237 (2013), 194–251. MR 3028577, DOI 10.1016/j.aim.2013.01.006
- Alexander Kuznetsov, Calabi-Yau and fractional Calabi-Yau categories, J. Reine Angew. Math. 753 (2019), 239–267. MR 3987870, DOI 10.1515/crelle-2017-0004
- Robert Lazarsfeld, Positivity in algebraic geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 48, Springer-Verlag, Berlin, 2004. Classical setting: line bundles and linear series. MR 2095471, DOI 10.1007/978-3-642-18808-4
- Helmut Lenzing, Weighted projective lines and applications, Representations of algebras and related topics, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2011, pp. 153–187. MR 2931898, DOI 10.4171/101-1/5
- Helmut Lenzing and Hagen Meltzer, Sheaves on a weighted projective line of genus one, and representations of a tubular algebra [ MR1206953 (94d:16019)], Representations of algebras (Ottawa, ON, 1992) CMS Conf. Proc., vol. 14, Amer. Math. Soc., Providence, RI, 1993, pp. 313–337. MR 1265294
- Zbigniew Leszczyński and Andrzej Skowroński, Tame generalized canonical algebras, J. Algebra 273 (2004), no. 1, 412–433. MR 2032469, DOI 10.1016/S0021-8693(03)00369-7
- J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, Pure and Applied Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1987. With the cooperation of L. W. Small; A Wiley-Interscience Publication. MR 934572
- Hiroyuki Minamoto, A noncommutative version of Beilinson’s theorem, J. Algebra 320 (2008), no. 1, 238–252. MR 2417986, DOI 10.1016/j.jalgebra.2008.03.014
- Amnon Neeman, Triangulated categories, Annals of Mathematics Studies, vol. 148, Princeton University Press, Princeton, NJ, 2001. MR 1812507, DOI 10.1515/9781400837212
- Dmitri Nikshych, Semisimple weak Hopf algebras, J. Algebra 275 (2004), no. 2, 639–667. MR 2052631, DOI 10.1016/j.jalgebra.2003.09.025
- Dmitri Piontkovski, Coherent algebras and noncommutative projective lines, J. Algebra 319 (2008), no. 8, 3280–3290. MR 2408318, DOI 10.1016/j.jalgebra.2007.07.010
- Claus Michael Ringel, Tame algebras and integral quadratic forms, Lecture Notes in Mathematics, vol. 1099, Springer-Verlag, Berlin, 1984. MR 774589, DOI 10.1007/BFb0072870
- Fumio Sakai, Anti-Kodaira dimension of ruled surfaces, Sci. Rep. Saitama Univ. Ser. A 10 (1982), no. 2, 1–7. MR 662405
- Olivier Schiffmann, Lectures on Hall algebras, Geometric methods in representation theory. II, Sémin. Congr., vol. 24, Soc. Math. France, Paris, 2012, pp. 1–141 (English, with English and French summaries). MR 3202707
- Daniel Simson and Andrzej Skowroński, Elements of the representation theory of associative algebras. Vol. 2, London Mathematical Society Student Texts, vol. 71, Cambridge University Press, Cambridge, 2007. Tubes and concealed algebras of Euclidean type. MR 2360503
- Gautam Sisodia and S. Paul Smith, The Grothendieck group of non-commutative non-noetherian analogues of $\Bbb {P}^1$ and regular algebras of global dimension two, J. Algebra 426 (2015), 188–210. MR 3301905, DOI 10.1016/j.jalgebra.2014.11.024
- Darin R. Stephenson and James J. Zhang, Growth of graded Noetherian rings, Proc. Amer. Math. Soc. 125 (1997), no. 6, 1593–1605. MR 1371143, DOI 10.1090/S0002-9939-97-03752-0
- Adam-Christiaan van Roosmalen, Abelian hereditary fractionally Calabi-Yau categories, Int. Math. Res. Not. IMRN 12 (2012), 2708–2750. MR 2942708, DOI 10.1093/imrn/rnr118
- Elizabeth Wicks, Frobenius-Perron theory of modified $ADE$ bound quiver algebras, J. Pure Appl. Algebra 223 (2019), no. 6, 2673–2708. MR 3906568, DOI 10.1016/j.jpaa.2018.09.013
- Amnon Yekutieli, Dualizing complexes over noncommutative graded algebras, J. Algebra 153 (1992), no. 1, 41–84. MR 1195406, DOI 10.1016/0021-8693(92)90148-F
- Amnon Yekutieli and James J. Zhang, Serre duality for noncommutative projective schemes, Proc. Amer. Math. Soc. 125 (1997), no. 3, 697–707. MR 1372045, DOI 10.1090/S0002-9939-97-03782-9
- James J. Zhang, Non-Noetherian regular rings of dimension $2$, Proc. Amer. Math. Soc. 126 (1998), no. 6, 1645–1653. MR 1459158, DOI 10.1090/S0002-9939-98-04480-3
- James J. Zhang, Connected graded Gorenstein algebras with enough normal elements, J. Algebra 189 (1997), no. 2, 390–405. MR 1438182, DOI 10.1006/jabr.1996.6885
- J.J. Zhang and J.-H. Zhou, Frobenius-Perron theory of representations of quivers, Math. Z., 300 (2022), 3171–3225, https://doi.org/10.1007/s00209-021-02888-3.
Bibliographic Information
- J. M. Chen
- Affiliation: School of Mathematical Sciences, Xiamen University, Xiamen 361005, Fujian, People’s Republic of China
- ORCID: 0000-0002-2131-7782
- Email: chenjianmin@xmu.edu.cn
- Z. B. Gao
- Affiliation: Department of Communication Engineering, Xiamen University, Xiamen 361005, Fujian, People’s Republic of China
- ORCID: 0000-0003-1878-9065
- Email: gaozhibin@xmu.edu.cn
- E. Wicks
- Affiliation: Department of Mathematics, Box 354350, University of Washington, Seattle, Washington 98195
- MR Author ID: 1310352
- Email: elizabethlwicks@gmail.com
- J. J. Zhang
- Affiliation: Department of Mathematics, Box 354350, University of Washington, Seattle, Washington 98195
- MR Author ID: 314509
- Email: zhang@math.washington.edu
- X. H. Zhang
- Affiliation: College of Sciences, Ningbo University of Technology, Ningb 315211, Zhejiang, People’s Republic of China
- Email: zhang-xiaohong@t.shu.edu.cn
- H. Zhu
- Affiliation: Department of Information Sciences, the School of Mathematics and Physics, Changzhou University, Changzhou 213164, Jiangsu, People’s Republic of China
- Email: zhuhongazhu@aliyun.com
- Received by editor(s): April 29, 2020
- Received by editor(s) in revised form: December 10, 2021
- Published electronically: January 18, 2023
- Additional Notes: The first author was partially supported by the National Natural Science Foundation of China (Grant Nos. 11971398 and 12131018) and the Fundamental Research Funds for Central Universities of China (Grant No. 20720180002). The second author was partially supported by the National Natural Science Foundation of China (Grant No. 61971365). The third and fourth authors were partially supported by the US National Science Foundation (Grant Nos. DMS-1402863, DMS-1700825 and DMS-2001015). The fifth author was partially supported by the National Natural Science Foundation of China (Grant No. 11401328). The sixth author was partially supported by a grant from Jiangsu overseas Research and Training Program for university prominent young and middle-aged Teachers and Presidents, China
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 2293-2324
- MSC (2020): Primary 16E35, 16E65, 16E10; Secondary 16B50
- DOI: https://doi.org/10.1090/tran/8624
- MathSciNet review: 4557866