Amorphic complexity of group actions with applications to quasicrystals
HTML articles powered by AMS MathViewer
- by Gabriel Fuhrmann, Maik Gröger, Tobias Jäger and Dominik Kwietniak;
- Trans. Amer. Math. Soc. 376 (2023), 2395-2418
- DOI: https://doi.org/10.1090/tran/8700
- Published electronically: January 18, 2023
- HTML | PDF | Request permission
Abstract:
In this article, we define amorphic complexity for actions of locally compact $\sigma$-compact amenable groups on compact metric spaces. Amorphic complexity, originally introduced for $\mathbb {Z}$-actions, is a topological invariant which measures the complexity of dynamical systems in the regime of zero entropy. We show that it is tailor-made to study strictly ergodic group actions with discrete spectrum and continuous eigenfunctions. This class of actions includes, in particular, Delone dynamical systems related to regular model sets obtained via Meyer’s cut and project method. We provide sharp upper bounds on amorphic complexity of such systems. In doing so, we observe an intimate relationship between amorphic complexity and fractal geometry.References
- Joseph Auslander, Mean-$L$-stable systems, Illinois J. Math. 3 (1959), 566–579. MR 149462
- Michael Baake and Uwe Grimm, Aperiodic order. Vol. 1, Encyclopedia of Mathematics and its Applications, vol. 149, Cambridge University Press, Cambridge, 2013. A mathematical invitation; With a foreword by Roger Penrose. MR 3136260, DOI 10.1017/CBO9781139025256
- M. Baake, T. Jäger, and D. Lenz, Toeplitz flows and model sets, Bull. Lond. Math. Soc. 48 (2016), no. 4, 691–698. MR 3532143, DOI 10.1112/blms/bdw033
- Michael Baake, Daniel Lenz, and Robert V. Moody, Characterization of model sets by dynamical systems, Ergodic Theory Dynam. Systems 27 (2007), no. 2, 341–382. MR 2308136, DOI 10.1017/S0143385706000800
- Michael Baake, Daniel Lenz, and Christoph Richard, Pure point diffraction implies zero entropy for Delone sets with uniform cluster frequencies, Lett. Math. Phys. 82 (2007), no. 1, 61–77. MR 2367875, DOI 10.1007/s11005-007-0186-7
- Patrick Billingsley, Hausdorff dimension in probability theory, Illinois J. Math. 4 (1960), 187–209. MR 131903
- Lewis Bowen, Examples in the entropy theory of countable group actions, Ergodic Theory Dynam. Systems 40 (2020), no. 10, 2593–2680. MR 4138907, DOI 10.1017/etds.2019.18
- J. S. Cánovas, A guide to topological sequence entropy. In J. T. Kelly (ed.), Progress in Mathematical Biology Research, Nova Science Publishers, New York, 2008, pp. 101–139.
- Serge Cantat and Olga Paris-Romaskevich, Automorphisms of compact Kähler manifolds with slow dynamics, Trans. Amer. Math. Soc. 374 (2021), no. 2, 1351–1389. MR 4196396, DOI 10.1090/tran/8229
- Maria de Carvalho, Entropy dimension of dynamical systems, Portugal. Math. 54 (1997), no. 1, 19–40. MR 1440126
- María Isabel Cortez, ${\Bbb Z}^d$ Toeplitz arrays, Discrete Contin. Dyn. Syst. 15 (2006), no. 3, 859–881. MR 2220753, DOI 10.3934/dcds.2006.15.859
- María Isabel Cortez and Konstantin Medynets, Orbit equivalence rigidity of equicontinuous systems, J. Lond. Math. Soc. (2) 94 (2016), no. 2, 545–556. MR 3556453, DOI 10.1112/jlms/jdw047
- María Isabel Cortez and Samuel Petite, $G$-odometers and their almost one-to-one extensions, J. Lond. Math. Soc. (2) 78 (2008), no. 1, 1–20. MR 2427048, DOI 10.1112/jlms/jdn002
- Dou Dou, Wen Huang, and Kyewon Koh Park, Entropy dimension of topological dynamical systems, Trans. Amer. Math. Soc. 363 (2011), no. 2, 659–680. MR 2728582, DOI 10.1090/S0002-9947-2010-04906-2
- Tomasz Downarowicz and Eli Glasner, Isomorphic extensions and applications, Topol. Methods Nonlinear Anal. 48 (2016), no. 1, 321–338. MR 3586277, DOI 10.12775/TMNA.2016.050
- Gerald A. Edgar, Integral, probability, and fractal measures, Springer-Verlag, New York, 1998. MR 1484412, DOI 10.1007/978-1-4757-2958-0
- W. R. Emerson and F. P. Greenleaf, Covering properties and Følner conditions for locally compact groups, Math. Z. 102 (1967), 370–384. MR 220860, DOI 10.1007/BF01111075
- Kenneth Falconer, Fractal geometry, 2nd ed., John Wiley & Sons, Inc., Hoboken, NJ, 2003. Mathematical foundations and applications. MR 2118797, DOI 10.1002/0470013850
- N. Pytheas Fogg, Substitutions in dynamics, arithmetics and combinatorics, Lecture Notes in Mathematics, vol. 1794, Springer-Verlag, Berlin, 2002. Edited by V. Berthé, S. Ferenczi, C. Mauduit and A. Siegel. MR 1970385, DOI 10.1007/b13861
- G. Fuhrmann, E. Glasner, T. Jäger, and C. Oertel, Irregular model sets and tame dynamics, Trans. Amer. Math. Soc. 374 (2021), no. 5, 3703–3734. MR 4237960, DOI 10.1090/tran/8349
- Gabriel Fuhrmann and Maik Gröger, Constant length substitutions, iterated function systems and amorphic complexity, Math. Z. 295 (2020), no. 3-4, 1385–1404. MR 4125694, DOI 10.1007/s00209-019-02426-2
- G. Fuhrmann, M. Gröger, and T. Jäger, Amorphic complexity, Nonlinearity 29 (2016), no. 2, 528–565. MR 3461608, DOI 10.1088/0951-7715/29/2/528
- G. Fuhrmann and M. Gröger and D. Lenz, The structure of mean equicontinuous group actions, Israel Journal of Mathematics 247 (2022), 75-123., DOI 10.1007/s11856-022-2292-8
- Gabriel Fuhrmann and Dominik Kwietniak, On tameness of almost automorphic dynamical systems for general groups, Bull. Lond. Math. Soc. 52 (2020), no. 1, 24–42. MR 4072030, DOI 10.1112/blms.12304
- Harry Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory 1 (1967), 1–49. MR 213508, DOI 10.1007/BF01692494
- Felipe García-Ramos, Weak forms of topological and measure-theoretical equicontinuity: relationships with discrete spectrum and sequence entropy, Ergodic Theory Dynam. Systems 37 (2017), no. 4, 1211–1237. MR 3645516, DOI 10.1017/etds.2015.83
- Felipe García-Ramos and Brian Marcus, Mean sensitive, mean equicontinuous and almost periodic functions for dynamical systems, Discrete Contin. Dyn. Syst. 39 (2019), no. 2, 729–746. MR 3918192, DOI 10.3934/dcds.2019030
- Eli Glasner, The structure of tame minimal dynamical systems for general groups, Invent. Math. 211 (2018), no. 1, 213–244. MR 3742758, DOI 10.1007/s00222-017-0747-z
- Eli Glasner and Benjamin Weiss, Weak mixing properties for non-singular actions, Ergodic Theory Dynam. Systems 36 (2016), no. 7, 2203–2217. MR 3568977, DOI 10.1017/etds.2015.16
- T. N. T. Goodman, Topological sequence entropy, Proc. London Math. Soc. (3) 29 (1974), 331–350. MR 356009, DOI 10.1112/plms/s3-29.2.331
- M. Gröger and T. Jäger, Some remarks on modified power entropy. In Dynamics and numbers, volume 669 of Contemporary Mathematics, American Mathematical Society, 2016, 105–122.
- Maik Gröger and Olga Lukina, Measures and stabilizers of group Cantor actions, Discrete Contin. Dyn. Syst. 41 (2021), no. 5, 2001–2029. MR 4225902, DOI 10.3934/dcds.2020350
- Kamel N. Haddad and Aimee S. A. Johnson, Auslander systems, Proc. Amer. Math. Soc. 125 (1997), no. 7, 2161–2170. MR 1372033, DOI 10.1090/S0002-9939-97-03768-4
- Boris Hasselblatt and Anatole Katok, Principal structures, Handbook of dynamical systems, Vol. 1A, North-Holland, Amsterdam, 2002, pp. 1–203. MR 1928518, DOI 10.1016/S1874-575X(02)80003-0
- T. Hauser, Relative topological entropy for actions of non-discrete groups on compact spaces in the context of cut and project schemes, J. Dynam. Differential Equations 33 (2021), no. 2, 891–912. MR 4248638, DOI 10.1007/s10884-020-09838-3
- T. Hauser and F. M. Schneider, Entropy of group actions beyond uniform lattices. arXiv:2202.02088, 2022.
- Wen Huang and Xiangdong Ye, Combinatorial lemmas and applications to dynamics, Adv. Math. 220 (2009), no. 6, 1689–1716. MR 2493178, DOI 10.1016/j.aim.2008.11.009
- Christian Huck and Christoph Richard, On pattern entropy of weak model sets, Discrete Comput. Geom. 54 (2015), no. 3, 741–757. MR 3392977, DOI 10.1007/s00454-015-9718-6
- Tobias Jäger, Daniel Lenz, and Christian Oertel, Model sets with positive entropy in Euclidean cut and project schemes, Ann. Sci. Éc. Norm. Supér. (4) 52 (2019), no. 5, 1073–1106 (English, with English and French summaries). MR 4057777, DOI 10.24033/asens.2403
- Antoine Julien, Complexity as a homeomorphism invariant for tiling spaces, Ann. Inst. Fourier (Grenoble) 67 (2017), no. 2, 539–577 (English, with English and French summaries). MR 3669506, DOI 10.5802/aif.3091
- Johannes Kellendonk, Daniel Lenz, and Jean Savinien (eds.), Mathematics of aperiodic order, Progress in Mathematics, vol. 309, Birkhäuser/Springer, Basel, 2015. MR 3380566, DOI 10.1007/978-3-0348-0903-0
- Johannes Kellendonk and Lorenzo Sadun, Meyer sets, topological eigenvalues, and Cantor fiber bundles, J. Lond. Math. Soc. (2) 89 (2014), no. 1, 114–130. MR 3174736, DOI 10.1112/jlms/jdt062
- David Kerr and Hanfeng Li, Independence in topological and $C^*$-dynamics, Math. Ann. 338 (2007), no. 4, 869–926. MR 2317754, DOI 10.1007/s00208-007-0097-z
- David Kerr and Hanfeng Li, Combinatorial independence in measurable dynamics, J. Funct. Anal. 256 (2009), no. 5, 1341–1386. MR 2490222, DOI 10.1016/j.jfa.2008.12.014
- David Kerr and Hanfeng Li, Ergodic theory, Springer Monographs in Mathematics, Springer, Cham, 2016. Independence and dichotomies. MR 3616077, DOI 10.1007/978-3-319-49847-8
- Depeng Kong and Ercai Chen, Slow entropy for noncompact sets and variational principle, J. Dynam. Differential Equations 26 (2014), no. 3, 477–492. MR 3274429, DOI 10.1007/s10884-014-9397-7
- Fabrice Krieger, Sous-décalages de Toeplitz sur les groupes moyennables résiduellement finis, J. Lond. Math. Soc. (2) 75 (2007), no. 2, 447–462 (French, with English and French summaries). MR 2340238, DOI 10.1112/jlms/jdm019
- M. Kulczycki, Amorphic Complexity Can Take Any Nonnegative Value, Journal of Dynamics and Differential Equations , posted on (2022)., DOI 10.1007/s10884-022-10172-z
- Marcin Kulczycki, Amorphic complexity can take any nonnegative value in general metric spaces, Dyn. Syst. 36 (2021), no. 1, 64–68. MR 4241197, DOI 10.1080/14689367.2020.1806990
- Martha Łącka and Marta Straszak, Quasi-uniform convergence in dynamical systems generated by an amenable group action, J. Lond. Math. Soc. (2) 98 (2018), no. 3, 687–707. MR 3893197, DOI 10.1112/jlms.12157
- Jeong-Yup Lee and Robert V. Moody, A characterization of model multi-colour sets, Ann. Henri Poincaré 7 (2006), no. 1, 125–143. MR 2205466, DOI 10.1007/s00023-005-0244-6
- J.-Y. Lee, R. V. Moody, and B. Solomyak, Pure point dynamical and diffraction spectra, Ann. Henri Poincaré 3 (2002), no. 5, 1003–1018. MR 1937612, DOI 10.1007/s00023-002-8646-1
- Daniel Lenz, Continuity of eigenfunctions of uniquely ergodic dynamical systems and intensity of Bragg peaks, Comm. Math. Phys. 287 (2009), no. 1, 225–258. MR 2480747, DOI 10.1007/s00220-008-0594-2
- Jian Li, Siming Tu, and Xiangdong Ye, Mean equicontinuity and mean sensitivity, Ergodic Theory Dynam. Systems 35 (2015), no. 8, 2587–2612. MR 3456608, DOI 10.1017/etds.2014.41
- Elon Lindenstrauss, Pointwise theorems for amenable groups, Invent. Math. 146 (2001), no. 2, 259–295. MR 1865397, DOI 10.1007/s002220100162
- Jean-Pierre Marco, Polynomial entropies and integrable Hamiltonian systems, Regul. Chaotic Dyn. 18 (2013), no. 6, 623–655. MR 3146583, DOI 10.1134/S1560354713060051
- Yves Meyer, Algebraic numbers and harmonic analysis, North-Holland Mathematical Library, Vol. 2, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York, 1972. MR 485769
- Donald S. Ornstein and Benjamin Weiss, Entropy and isomorphism theorems for actions of amenable groups, J. Analyse Math. 48 (1987), 1–141. MR 910005, DOI 10.1007/BF02790325
- E. Arthur Robinson Jr., The dynamical properties of Penrose tilings, Trans. Amer. Math. Soc. 348 (1996), no. 11, 4447–4464. MR 1355301, DOI 10.1090/S0002-9947-96-01640-6
- E. Arthur Robinson Jr., On the table and the chair, Indag. Math. (N.S.) 10 (1999), no. 4, 581–599. MR 1820555, DOI 10.1016/S0019-3577(00)87911-2
- E. Arthur Robinson Jr., A Halmos-von Neumann theorem for model sets, and almost automorphic dynamical systems, Dynamics, ergodic theory, and geometry, Math. Sci. Res. Inst. Publ., vol. 54, Cambridge Univ. Press, Cambridge, 2007, pp. 243–272. MR 2369449, DOI 10.1017/CBO9780511755187.010
- Marcin Sabok and Todor Tsankov, On the complexity of topological conjugacy of Toeplitz subshifts, Israel J. Math. 220 (2017), no. 2, 583–603. MR 3666438, DOI 10.1007/s11856-017-1541-8
- Martin Schlottmann, Generalized model sets and dynamical systems, Directions in mathematical quasicrystals, CRM Monogr. Ser., vol. 13, Amer. Math. Soc., Providence, RI, 2000, pp. 143–159. MR 1798991
- L’ubomír Snoha, Xiangdong Ye, and Ruifeng Zhang, Topology and topological sequence entropy, Sci. China Math. 63 (2020), no. 2, 205–296. MR 4054317, DOI 10.1007/s11425-019-9536-7
- Raimond A. Struble, Metrics in locally compact groups, Compositio Math. 28 (1974), 217–222. MR 348037
- Nicolae Strungaru, Almost periodic measures and long-range order in Meyer sets, Discrete Comput. Geom. 33 (2005), no. 3, 483–505. MR 2121992, DOI 10.1007/s00454-004-1156-9
- Arkady Tempelman, Ergodic theorems for group actions, Mathematics and its Applications, vol. 78, Kluwer Academic Publishers Group, Dordrecht, 1992. Informational and thermodynamical aspects; Translated and revised from the 1986 Russian original. MR 1172319, DOI 10.1007/978-94-017-1460-0
- Yaroslav Vorobets, Notes on the Schreier graphs of the Grigorchuk group, Dynamical systems and group actions, Contemp. Math., vol. 567, Amer. Math. Soc., Providence, RI, 2012, pp. 221–248. MR 2931920, DOI 10.1090/conm/567/11250
- B. and Huang Zhu X. and Lian, The Systems with Almost Banach-Mean Equicontinuity for Abelian Group Actions, Acta Mathematica Scientia 42 (2022), 919-940., DOI 10.1007/s10473-022-0307-5
Bibliographic Information
- Gabriel Fuhrmann
- Affiliation: Department of Mathematical Sciences, Durham University, United Kingdom
- MR Author ID: 1149230
- ORCID: 0000-0002-0634-0802
- Email: gabriel.fuhrmann@durham.ac.uk
- Maik Gröger
- Affiliation: Faculty of Mathematics and Computer Science, Jagiellonian University in Kraków, Poland
- ORCID: 0000-0003-0802-8932
- Email: maik.groeger@im.uj.edu.pl
- Tobias Jäger
- Affiliation: Department of Mathematics, University of Jena, Germany
- ORCID: 0000-0001-8457-8392
- Email: tobias.jaeger@uni-jena.de
- Dominik Kwietniak
- Affiliation: Faculty of Mathematics and Computer Science, Jagiellonian University in Kraków, Poland
- MR Author ID: 773622
- ORCID: 0000-0002-7794-2835
- Email: dominik.kwietniak@uj.edu.pl
- Received by editor(s): May 14, 2021
- Received by editor(s) in revised form: January 17, 2022, and February 23, 2022
- Published electronically: January 18, 2023
- Additional Notes: This project received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 750865. The research leading to these results received funding from the Norwegian Financial Mechanism 2014-2021 via the POLS grant no. 2020/37/K/ST1/02770. Furthermore, it received support by the DFG Emmy-Noether grant Ja 1721/2-1 and DFG Heisenberg grant Oe 538/6-1.
The fourth author was supported by the National Science Centre, Poland, grant no. 2018/29/B/ST1/01340. - © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 2395-2418
- DOI: https://doi.org/10.1090/tran/8700
- MathSciNet review: 4557869