Trinomials, torus knots and chains
HTML articles powered by AMS MathViewer
- by Waldemar Barrera, Julio C. Magaña and Juan Pablo Navarrete;
- Trans. Amer. Math. Soc. 376 (2023), 2963-3004
- DOI: https://doi.org/10.1090/tran/8834
- Published electronically: January 27, 2023
- HTML | PDF | Request permission
Abstract:
Let $n>m$ be fixed positive coprime integers. For $v>0$, we give a topological description of the set $\Lambda (v)$, consisting of points $[x:y:z]$ in the complex projective plane for which the equation $x\zeta ^n +y \zeta ^m+z=0$ has a root with norm $v$. It is shown that the set $\Omega (v)= {\mathbb P_{\mathbb C}} ^2 \setminus \Lambda (v)$ has $n+1$ components. Moreover, the topological type of each component is given. The same results hold for $\Lambda$ and $\Omega ={\mathbb P_{\mathbb C}}^2 \setminus \Lambda$, where $\Lambda$ denotes the set obtained as the union of all the complex tangent lines to the $3$-sphere at the points of the torus knot, that is, the knot obtained by intersecting $\{[x:y:1] \in \mathbb {P}_{\mathbb C}^2 : |x|^2+|y|^2=1\}$ and the complex curve $\{[x:y:1] \in {\mathbb P_{\mathbb C}} ^2 : y^m=x^n\}$. Finally, we use the linking number of a distinguished family of circles and the torus knot to give a numerical invariant which determines the components of $\Omega$ in a unique way.References
- W. Barrera, A. Cano, R. García, and J. P. Navarrete, Chains homotopy in the complement of a knot in the sphere $S^3$, Bull. Braz. Math. Soc. (N.S.) 50 (2019), no. 4, 971–997. MR 4029189, DOI 10.1007/s00574-019-00136-1
- Dževad Belkić, All the trinomial roots, their powers and logarithms from the Lambert series, Bell polynomials and Fox-Wright function: illustration for genome multiplicity in survival of irradiated cells, J. Math. Chem. 57 (2019), no. 1, 59–106. MR 3903813, DOI 10.1007/s10910-018-0985-3
- M. Biernaky, Sur un nouveau théorème d’Algébre (French), C. R. Acad. Sci. 177 (1923), 1193–1194.
- P. Bohl, Zur Theorie der trinomischen Gleichungen, Math. Ann. 65 (1908), no. 4, 556–566 (German). MR 1511483, DOI 10.1007/BF01451170
- V. Botta and J. V. da Silva, On the behavior of roots of trinomial equations, Acta Math. Hungar. 157 (2019), no. 1, 54–62. MR 3911159, DOI 10.1007/s10474-018-0896-6
- Michael A. Brilleslyper and Lisbeth E. Schaubroeck, Counting interior roots of trinomials, Math. Mag. 91 (2018), no. 2, 142–150. MR 3777918, DOI 10.1080/0025570X.2017.1420332
- Michael A. Brilleslyper and Lisbeth E. Schaubroeck, Locating unimodular roots, College Math. J. 45 (2014), no. 3, 162–168. MR 3207562, DOI 10.4169/college.math.j.45.3.162
- Angel Cano, John R. Parker, and José Seade, Action of $\Bbb R$-Fuchsian groups on $\Bbb {CP}^2$, Asian J. Math. 20 (2016), no. 3, 449–473. MR 3528828, DOI 10.4310/AJM.2016.v20.n3.a3
- Karl Dilcher, James D. Nulton, and Kenneth B. Stolarsky, The zeros of a certain family of trinomials, Glasgow Math. J. 34 (1992), no. 1, 55–74. MR 1145632, DOI 10.1017/S0017089500008545
- Serge Dubuc and Abdul Malik, Convex hull of powers of a complex number, trinomial equations and the Farey sequence, Numer. Algorithms 2 (1992), no. 1, 1–32. MR 1149062, DOI 10.1007/BF02142203
- J. Egerváry, On the trinomial equation (Hungarian), Math. Phys. Lapok 37 (1930), 36–57.
- L. Euler, Deformulis exponentialibus replicatis. Reprinted in Leonhard Euleri Opera Omnia, Ser. Prima, Opera Mathematica 15, 268–297 (1927) (original publication year: 1777)
- L. Euler, De serie Lambertina plurimisque eius insignibus proprietatibus, Acta Acad. Sci. Imperialis Petropolitinae 2 (1783), 29–51 (original publication year: 1773); reprinted in L. Euler,Opera Omnia, Series Prima, Commentationes Algebraicae, vol. 6, Teubner, Leipzig, Germany, 1921), pp. 350–369, http://math.dartmouth.edu/ euler.docs/originals/E532.pdf.
- G. Farkas, Sur les fonctions itératives (French), J. Math. 10 (1884), 101–108.
- Harriet Fell, The geometry of zeros of trinomial equations, Rend. Circ. Mat. Palermo (2) 29 (1980), no. 2, 303–336 (English, with French summary). MR 636077, DOI 10.1007/BF02849349
- C. F. Gauss, Résolution numérique des équations trinomes, Nouv. Ann. Math. 10 (1851), 165–174.
- Étienne Ghys, A singular mathematical promenade, ENS Éditions, Lyon, 2017. MR 3702027
- William M. Goldman, Complex hyperbolic geometry, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1999. Oxford Science Publications. MR 1695450
- Jack E. Graver and Mark E. Watkins, Combinatorics with emphasis on the theory of graphs, Graduate Texts in Mathematics, Vol. 54, Springer-Verlag, New York-Berlin, 1977. MR 505525, DOI 10.1007/978-1-4612-9914-1
- Victor Guillemin and Alan Pollack, Differential topology, AMS Chelsea Publishing, Providence, RI, 2010. Reprint of the 1974 original. MR 2680546, DOI 10.1090/chel/370
- Russell Howell and David Kyle, Locating trinomial zeros, Involve 11 (2018), no. 4, 711–720. MR 3778921, DOI 10.2140/involve.2018.11.711
- Aubrey J. Kempner, Über die Separation komplexer Wurzeln algebraischer Gleichungen, Math. Ann. 85 (1922), no. 1, 49–59 (German). MR 1512044, DOI 10.1007/BF01449601
- M. M. Kipnis and R. M. Nigmatulin, Stability of trinomial linear difference equations with two delays, Avtomat. i Telemekh. 11 (2004), 25–39 (Russian, with Russian summary); English transl., Autom. Remote Control 65 (2004), no. 11, 1710–1723. MR 2114854, DOI 10.1023/B:AURC.0000047886.46498.79
- Spiridon A. Kuruklis, The asymptotic stability of $x_{n+1}-ax_n+bx_{n-k}=0$, J. Math. Anal. Appl. 188 (1994), no. 3, 719–731. MR 1305480, DOI 10.1006/jmaa.1994.1457
- J. H. Lambert, Observationes varie in mathesin puram, Acta Helvetica Physico-mathematicoanatomico-botanico-medica 3 (1758), 128–168, http://www.kuttaka.org/ JHL/L1758c.pdf.
- J. H. Lambert, Observationes analitiques, Nouv. Mém. Acad. R. SCi. Lett. 1 (1770), 225–244.
- E. Landau, Sur quelques généralisations du théorème de M. Picard, Ann. Sci. École Norm. Sup. (3) 24 (1907), 179–201 (French). MR 1509080, DOI 10.24033/asens.578
- Aaron Melman, Geometry of trinomials, Pacific J. Math. 259 (2012), no. 1, 141–159. MR 2988487, DOI 10.2140/pjm.2012.259.141
- J.-P. Navarrete, On the limit set of discrete subgroups of $\textrm {PU}(2,1)$, Geom. Dedicata 122 (2006), 1–13. MR 2295538, DOI 10.1007/s10711-006-9051-6
- P. Nekrassoff, Ueber trinomische Gleichungen, Math. Ann. 29 (1887), no. 3, 413–430 (German). MR 1510423, DOI 10.1007/BF01447732
- Dale Rolfsen, Knots and links, Mathematics Lecture Series, No. 7, Publish or Perish, Inc., Berkeley, CA, 1976. MR 515288
- Michael Spivak, A comprehensive introduction to differential geometry. Vol. IV, Publish or Perish, Inc., Boston, MA, 1975. MR 394452
- Péter Gábor Szabó, On the roots of the trinomial equation, CEJOR Cent. Eur. J. Oper. Res. 18 (2010), no. 1, 97–104. MR 2593126, DOI 10.1007/s10100-009-0130-2
- Thorsten Theobald and Timo de Wolff, Norms of roots of trinomials, Math. Ann. 366 (2016), no. 1-2, 219–247. MR 3552238, DOI 10.1007/s00208-015-1323-8
Bibliographic Information
- Waldemar Barrera
- Affiliation: Facultad de Matemáticas, Universidad Autónoma de Yucatán, Anillo Periférico Norte Tablaje Cat 13615, Mérida, Yucatán, México
- MR Author ID: 719536
- ORCID: 0000-0001-6885-5556
- Email: bvargas@correo.uady.mx
- Julio C. Magaña
- Affiliation: Facultad de Matemáticas, Universidad Autónoma de Yucatán, Anillo Periférico Norte Tablaje Cat 13615, Mérida, Yucatán, México
- ORCID: 0000-0002-3272-7541
- Email: julio.magana@correo.uady.mx
- Juan Pablo Navarrete
- Affiliation: Facultad de Matemáticas, Universidad Autónoma de Yucatán, Anillo Periférico Norte Tablaje Cat 13615, Mérida, Yucatán, México
- MR Author ID: 719570
- ORCID: 0000-0002-3930-4365
- Email: jp.navarrete@correo.uady.mx
- Received by editor(s): March 26, 2021
- Received by editor(s) in revised form: August 26, 2022, and September 26, 2022
- Published electronically: January 27, 2023
- Additional Notes: The research of the first author was partially supported by Conacyt-SNI 45382, Conacyt Ciencia de Frontera 21100. The research of the second author was supported by Conacyt-Fordecyt 265667 Grupos Kleinianos y Geometría Hiperbólica and Estancia Post-doctoral Nacional Conacyt 2020-2021. The research of the third author was partially supported by Conacyt-SNI 35874, Conacyt Ciencia de Frontera 21100.
All authors have contributed equally to the paper and they have no conflict of interest - © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 2963-3004
- MSC (2020): Primary 12D10, 57M99, 51M10
- DOI: https://doi.org/10.1090/tran/8834
- MathSciNet review: 4557887