Free actions of groups on separated graph $C^*$-algebras
HTML articles powered by AMS MathViewer
- by Pere Ara, Alcides Buss and Ado Dalla Costa;
- Trans. Amer. Math. Soc. 376 (2023), 2875-2919
- DOI: https://doi.org/10.1090/tran/8839
- Published electronically: January 23, 2023
- HTML | PDF | Request permission
Abstract:
In this paper we study free actions of groups on separated graphs and their $C^*$-algebras, generalizing previous results involving ordinary (directed) graphs.
We prove a version of the Gross-Tucker Theorem for separated graphs yielding a characterization of free actions on separated graphs via a skew product of the (orbit) separated graph by a group labeling function. Moreover, we describe the $C^*$-algebras associated to these skew products as crossed products by certain coactions coming from the labeling function on the graph. Our results deal with both the full and the reduced $C^*$-algebras of separated graphs.
To prove our main results we use several techniques that involve certain canonical conditional expectations defined on the $C^*$-algebras of separated graphs and their structure as amalgamated free products of ordinary graph $C^*$-algebras. Moreover, we describe Fell bundles associated with the coactions of the appearing labeling functions. As a byproduct of our results, we deduce that the $C^*$-algebras of separated graphs always have a canonical Fell bundle structure over the free group on their edges.
References
- Claire Anantharaman-Delaroche, Systèmes dynamiques non commutatifs et moyennabilité, Math. Ann. 279 (1987), no. 2, 297–315 (French). MR 919508, DOI 10.1007/BF01461725
- Pere Ara, Purely infinite simple reduced $C^*$-algebras of one-relator separated graphs, J. Math. Anal. Appl. 393 (2012), no. 2, 493–508. MR 2921692, DOI 10.1016/j.jmaa.2012.04.014
- Pere Ara, Joan Bosa, and Enrique Pardo, The realization problem for finitely generated refinement monoids, Selecta Math. (N.S.) 26 (2020), no. 3, Paper no. 33, 63., DOI 10.1007/s00029-020-00559-5
- Pere Ara and Ruy Exel, Dynamical systems associated to separated graphs, graph algebras, and paradoxical decompositions, Adv. Math. 252 (2014), 748–804. MR 3144248, DOI 10.1016/j.aim.2013.11.009
- P. Ara and K. R. Goodearl, $C^\ast$-algebras of separated graphs, J. Funct. Anal. 261 (2011), no. 9, 2540–2568. MR 2826405, DOI 10.1016/j.jfa.2011.07.004
- Pere Ara and Kenneth R. Goodearl, Leavitt path algebras of separated graphs, J. Reine Angew. Math. 669 (2012), 165–224. MR 2980456, DOI 10.1515/crelle.2011.146
- Scott Armstrong, Ken Dykema, Ruy Exel, and Hanfeng Li, On embeddings of full amalgamated free product $C^*$-algebras, Proc. Amer. Math. Soc. 132 (2004), no. 7, 2019–2030. MR 2053974, DOI 10.1090/S0002-9939-04-07370-8
- Teresa Bates, David Pask, and Paulette Willis, Group actions on labeled graphs and their $C^*$-algebras, Illinois J. Math. 56 (2012), no. 4, 1149–1168. MR 3231477
- Bruce E. Blackadar, Weak expectations and nuclear $C^{\ast }$-algebras, Indiana Univ. Math. J. 27 (1978), no. 6, 1021–1026. MR 511256, DOI 10.1512/iumj.1978.27.27070
- B. Blackadar, Operator algebras, Encyclopaedia of Mathematical Sciences, vol. 122, Springer-Verlag, Berlin, 2006. Theory of $C^*$-algebras and von Neumann algebras; Operator Algebras and Non-commutative Geometry, III. MR 2188261, DOI 10.1007/3-540-28517-2
- Berndt Brenken and Zhuang Niu, The $\rm C^*$-algebra of a partial isometry, Proc. Amer. Math. Soc. 140 (2012), no. 1, 199–206. MR 2833532, DOI 10.1090/S0002-9939-2011-10988-2
- Lawrence G. Brown, Ext of certain free product $C^{\ast }$-algebras, J. Operator Theory 6 (1981), no. 1, 135–141. MR 637007
- Nathanial P. Brown and Narutaka Ozawa, $C^*$-algebras and finite-dimensional approximations, Graduate Studies in Mathematics, vol. 88, American Mathematical Society, Providence, RI, 2008. MR 2391387, DOI 10.1090/gsm/088
- Alcides Buss and Siegfried Echterhoff, Maximality of dual coactions on sectional $C^*$-algebras of Fell bundles and applications, Studia Math. 229 (2015), no. 3, 233–262. MR 3454302, DOI 10.4064/sm228-3-2
- Alcides Buss, Siegfried Echterhoff, and Rufus Willett, Amenability and weak containment for actions of locally compact groups on C*-algebras. Preprint, Eprint, arXiv:2003.03469, 2020.
- Joachim Cuntz, Simple $C^*$-algebras generated by isometries, Comm. Math. Phys. 57 (1977), no. 2, 173–185. MR 467330, DOI 10.1007/BF01625776
- Joachim Cuntz and Wolfgang Krieger, A class of $C^{\ast }$-algebras and topological Markov chains, Invent. Math. 56 (1980), no. 3, 251–268. MR 561974, DOI 10.1007/BF01390048
- Klaus Deicke, David Pask, and Iain Raeburn, Coverings of directed graphs and crossed products of $C^*$-algebras by coactions of homogeneous spaces, Internat. J. Math. 14 (2003), no. 7, 773–789. MR 2000743, DOI 10.1142/S0129167X03001995
- Benton L. Duncan, Certain free products of graph operator algebras, J. Math. Anal. Appl. 364 (2010), no. 2, 534–543. MR 2576204, DOI 10.1016/j.jmaa.2009.11.023
- Kenneth J. Dykema, Exactness of reduced amalgamated free product $C^*$-algebras, Forum Math. 16 (2004), no. 2, 161–180. MR 2039095, DOI 10.1515/form.2004.008
- Siegfried Echterhoff, S. Kaliszewski, and John Quigg, Maximal coactions, Internat. J. Math. 15 (2004), no. 1, 47–61. MR 2039211, DOI 10.1142/S0129167X04002107
- Siegfried Echterhoff, S. Kaliszewski, John Quigg, and Iain Raeburn, A categorical approach to imprimitivity theorems for $C^*$-dynamical systems, Mem. Amer. Math. Soc. 180 (2006), no. 850, viii+169. MR 2203930, DOI 10.1090/memo/0850
- Siegfried Echterhoff and John Quigg, Induced coactions of discrete groups on $C^*$-algebras, Canad. J. Math. 51 (1999), no. 4, 745–770. MR 1701340, DOI 10.4153/CJM-1999-032-1
- Ruy Exel, Twisted partial actions: a classification of regular $C^*$-algebraic bundles, Proc. London Math. Soc. (3) 74 (1997), no. 2, 417–443. MR 1425329, DOI 10.1112/S0024611597000154
- Ruy Exel, Partial representations and amenable Fell bundles over free groups, Pacific J. Math. 192 (2000), no. 1, 39–63. MR 1741030, DOI 10.2140/pjm.2000.192.39
- Ruy Exel, Exact groups and Fell bundles, Math. Ann. 323 (2002), no. 2, 259–266. MR 1913042, DOI 10.1007/s002080200295
- Ruy Exel, Partial dynamical systems, Fell bundles and applications, Mathematical Surveys and Monographs, vol. 224, American Mathematical Society, Providence, RI, 2017. MR 3699795, DOI 10.1090/surv/224
- Pierre Eymard, L’algèbre de Fourier d’un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181–236 (French). MR 228628, DOI 10.24033/bsmf.1607
- Haibin Fan and Zhenpan Wang, On Leavitt inverse semigroups, J. Algebra Appl. 20 (2021), no. 9, Paper No. 2150158, 7. MR 4301163, DOI 10.1142/S0219498821501589
- Jonathan L. Gross and Thomas W. Tucker, Generating all graph coverings by permutation voltage assignments, Discrete Math. 18 (1977), no. 3, 273–283. MR 465917, DOI 10.1016/0012-365X(77)90131-5
- Jonathan L. Gross and Thomas W. Tucker, Topological graph theory, Dover Publications, Inc., Mineola, NY, 2001. Reprint of the 1987 original [Wiley, New York; MR0898434 (88h:05034)] with a new preface and supplementary bibliography. MR 1855951
- Nikolay A. Ivanov, On the structure of some reduced amalgamated free product $C^*$-algebras, Internat. J. Math. 22 (2011), no. 2, 281–306. MR 2782689, DOI 10.1142/S0129167X11006799
- S. Kaliszewski, John Quigg, and Iain Raeburn, Skew products and crossed products by coactions, J. Operator Theory 46 (2001), no. 2, 411–433. MR 1870415
- Yoshikazu Katayama, Takesaki’s duality for a nondegenerate co-action, Math. Scand. 55 (1984), no. 1, 141–151. MR 769030, DOI 10.7146/math.scand.a-12072
- Alex Kumjian and David Pask, $C^*$-algebras of directed graphs and group actions, Ergodic Theory Dynam. Systems 19 (1999), no. 6, 1503–1519. MR 1738948, DOI 10.1017/S0143385799151940
- Alex Kumjian, David Pask, and Iain Raeburn, Cuntz-Krieger algebras of directed graphs, Pacific J. Math. 184 (1998), no. 1, 161–174. MR 1626528, DOI 10.2140/pjm.1998.184.161
- Alex Kumjian, David Pask, Iain Raeburn, and Jean Renault, Graphs, groupoids, and Cuntz-Krieger algebras, J. Funct. Anal. 144 (1997), no. 2, 505–541. MR 1432596, DOI 10.1006/jfan.1996.3001
- Bartosz Kosma Kwaśniewski and Ralf Meyer, Aperiodicity, topological freeness and pure outerness: from group actions to Fell bundles, Studia Math. 241 (2018), no. 3, 257–303. MR 3756105, DOI 10.4064/sm8762-5-2017
- Bartosz Kosma Kwaśniewski and Ralf Meyer, Essential crossed products for inverse semigroup actions: simplicity and pure infiniteness, Doc. Math. 26 (2021), 271–335. MR 4246403, DOI 10.4171/dm/815
- Magnus B. Landstad, Duality theory for covariant systems, Trans. Amer. Math. Soc. 248 (1979), no. 2, 223–267. MR 522262, DOI 10.1090/S0002-9947-1979-0522262-6
- W. G. Leavitt, The module type of a ring, Trans. Amer. Math. Soc. 103 (1962), 113–130. MR 132764, DOI 10.1090/S0002-9947-1962-0132764-X
- Kevin McClanahan, $K$-theory and $\textrm {Ext}$-theory for rectangular unitary $C^*$-algebras, Rocky Mountain J. Math. 23 (1993), no. 3, 1063–1080. MR 1245464, DOI 10.1216/rmjm/1181072541
- John Meakin, David Milan, and Zhengpan Wang, On a class of inverse semigroups related to Leavitt path algebras, Adv. Math. 384 (2021), Paper No. 107729, 37. MR 4242903, DOI 10.1016/j.aim.2021.107729
- Chi-Keung Ng, Discrete coactions on $C^\ast$-algebras, J. Austral. Math. Soc. Ser. A 60 (1996), no. 1, 118–127. MR 1364557, DOI 10.1017/S1446788700037423
- D. V. Voiculescu, K. J. Dykema, and A. Nica, Free random variables, CRM Monograph Series, vol. 1, American Mathematical Society, Providence, RI, 1992. A noncommutative probability approach to free products with applications to random matrices, operator algebras and harmonic analysis on free groups. MR 1217253, DOI 10.1090/crmm/001
- May Nilsen, Duality for full crossed products of $C^\ast$-algebras by non-amenable groups, Proc. Amer. Math. Soc. 126 (1998), no. 10, 2969–2978. MR 1469427, DOI 10.1090/S0002-9939-98-04598-5
- May Nilsen, Full crossed products by coactions, $C_0(X)$-algebras and $C^*$-bundles, Bull. London Math. Soc. 31 (1999), no. 5, 556–568. MR 1703865, DOI 10.1112/S0024609399005883
- William L. Paschke and Norberto Salinas, $C^{\ast }$-algebras associated with free products of groups, Pacific J. Math. 82 (1979), no. 1, 211–221. MR 549845, DOI 10.2140/pjm.1979.82.211
- M. B. Landstad, J. Phillips, I. Raeburn, and C. E. Sutherland, Representations of crossed products by coactions and principal bundles, Trans. Amer. Math. Soc. 299 (1987), no. 2, 747–784. MR 869232, DOI 10.1090/S0002-9947-1987-0869232-0
- John C. Quigg, Full and reduced $C^*$-coactions, Math. Proc. Cambridge Philos. Soc. 116 (1994), no. 3, 435–450. MR 1291751, DOI 10.1017/S0305004100072728
- John C. Quigg, Discrete $C^*$-coactions and $C^*$-algebraic bundles, J. Austral. Math. Soc. Ser. A 60 (1996), no. 2, 204–221. MR 1375586, DOI 10.1017/S1446788700037605
- Iain Raeburn, On crossed products by coactions and their representation theory, Proc. London Math. Soc. (3) 64 (1992), no. 3, 625–652. MR 1153000, DOI 10.1112/plms/s3-64.3.625
- Grzegorz Tomkowicz and Stan Wagon, The Banach-Tarski paradox, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 163, Cambridge University Press, New York, 2016. With a foreword by Jan Mycielski., DOI 10.1017/CBO9781107337145
- Dan Voiculescu, Symmetries of some reduced free product $C^\ast$-algebras, Operator algebras and their connections with topology and ergodic theory (Buşteni, 1983) Lecture Notes in Math., vol. 1132, Springer, Berlin, 1985, pp. 556–588. MR 799593, DOI 10.1007/BFb0074909
Bibliographic Information
- Pere Ara
- Affiliation: Departament de Matemàtiques, Edifici Cc, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain; and Centre de Recerca Matemàtica, Edifici Cc, Campus de Bellaterra, 08193 Cerdanyola del Vallès, Barcelona, Spain
- MR Author ID: 206418
- ORCID: 0000-0003-3739-9599
- Email: para@mat.uab.cat
- Alcides Buss
- Affiliation: Departamento de Matemática, Universidade Federal de Santa Catarina, 88.040-900 Florianópolis-SC, Brazil
- MR Author ID: 827256
- ORCID: 0000-0001-6796-9818
- Email: alcides.buss@ufsc.br
- Ado Dalla Costa
- Affiliation: Departamento de Matemática, Universidade Federal de Santa Catarina, 88.040-900 Florianópolis-SC, Brazil
- ORCID: 0000-0001-8029-2995
- Email: adodallacosta@hotmail.com
- Received by editor(s): April 19, 2022
- Received by editor(s) in revised form: September 12, 2022
- Published electronically: January 23, 2023
- Additional Notes: This work has been supported by CNPq/Humboldt-CAPES–Brazil. The first named author was partially supported by DGI-MINECO-FEDER grant PID2020-113047GB-I00, and the Spanish State Research Agency, through the Severo Ochoa and María de Maeztu Program for Centers and Units of Excellence in R$\&$D (CEX2020-001084-M)
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 2875-2919
- MSC (2020): Primary 46L55, 22D35
- DOI: https://doi.org/10.1090/tran/8839
- MathSciNet review: 4557884