Homotopy relative Rota-Baxter lie algebras, triangular $L_\infty$-bialgebras and higher derived brackets
HTML articles powered by AMS MathViewer
- by Andrey Lazarev, Yunhe Sheng and Rong Tang;
- Trans. Amer. Math. Soc. 376 (2023), 2921-2945
- DOI: https://doi.org/10.1090/tran/8844
- Published electronically: January 12, 2023
- HTML | PDF | Request permission
Abstract:
We describe $L_\infty$-algebras governing triangular $L_\infty$-bialgebras and homotopy relative Rota-Baxter Lie algebras and establish a map between them. Our formulas are based on a functorial approach to Voronov’s higher derived brackets construction which is of independent interest.References
- Chengming Bai, A unified algebraic approach to the classical Yang-Baxter equation, J. Phys. A 40 (2007), no. 36, 11073–11082. MR 2396216, DOI 10.1088/1751-8113/40/36/007
- Ruggero Bandiera, Nonabelian higher derived brackets, J. Pure Appl. Algebra 219 (2015), no. 8, 3292–3313. MR 3320220, DOI 10.1016/j.jpaa.2014.10.015
- Chengming Bai, Yunhe Sheng, and Chenchang Zhu, Lie 2-bialgebras, Comm. Math. Phys. 320 (2013), no. 1, 149–172. MR 3046993, DOI 10.1007/s00220-013-1712-3
- Denis Bashkirov and Alexander A. Voronov, $r_\infty$-matrices, triangular $L_\infty$-bialgebras and quantum$_\infty$ groups, Geometric methods in physics, Trends Math., Birkhäuser/Springer, Cham, 2015, pp. 39–47. MR 3629662, DOI 10.1007/978-3-319-18212-4_{2}
- Glen Baxter, An analytic problem whose solution follows from a simple algebraic identity, Pacific J. Math. 10 (1960), 731–742. MR 119224, DOI 10.2140/pjm.1960.10.731
- C. Braun and A. Lazarev, Unimodular homotopy algebras and Chern-Simons theory, J. Pure Appl. Algebra 219 (2015), no. 11, 5158–5194. MR 3351579, DOI 10.1016/j.jpaa.2015.05.017
- Martin Bordemann, An unabelian version of the Voronov higher bracket construction, Georgian Math. J. 22 (2015), no. 2, 189–214. MR 3353568, DOI 10.1515/gmj-2015-0021
- Alberto S. Cattaneo and Giovanni Felder, Relative formality theorem and quantisation of coisotropic submanifolds, Adv. Math. 208 (2007), no. 2, 521–548. MR 2304327, DOI 10.1016/j.aim.2006.03.010
- Joseph Chuang and Andrey Lazarev, $L$-infinity maps and twistings, Homology Homotopy Appl. 13 (2011), no. 2, 175–195. MR 2854334, DOI 10.4310/HHA.2011.v13.n2.a12
- Joseph Chuang and Andrey Lazarev, Combinatorics and formal geometry of the Maurer-Cartan equation, Lett. Math. Phys. 103 (2013), no. 1, 79–112. MR 3004818, DOI 10.1007/s11005-012-0586-1
- Vyjayanthi Chari and Andrew Pressley, A guide to quantum groups, Cambridge University Press, Cambridge, 1994. MR 1300632
- Alain Connes and Dirk Kreimer, Renormalization in quantum field theory and the Riemann-Hilbert problem. I. The Hopf algebra structure of graphs and the main theorem, Comm. Math. Phys. 210 (2000), no. 1, 249–273. MR 1748177, DOI 10.1007/s002200050779
- Vasily A. Dolgushev and Christopher L. Rogers, A version of the Goldman-Millson theorem for filtered $L_\infty$-algebras, J. Algebra 430 (2015), 260–302. MR 3323983, DOI 10.1016/j.jalgebra.2015.01.032
- Pavel Etingof and David Kazhdan, Quantization of Lie bialgebras. I, Selecta Math. (N.S.) 2 (1996), no. 1, 1–41. MR 1403351, DOI 10.1007/BF01587938
- Yaël Frégier and Marco Zambon, Simultaneous deformations and Poisson geometry, Compos. Math. 151 (2015), no. 9, 1763–1790. MR 3406444, DOI 10.1112/S0010437X15007277
- Yaël Frégier and Marco Zambon, Simultaneous deformations of algebras and morphisms via derived brackets, J. Pure Appl. Algebra 219 (2015), no. 12, 5344–5362. MR 3390025, DOI 10.1016/j.jpaa.2015.05.018
- William M. Goldman and John J. Millson, The deformation theory of representations of fundamental groups of compact Kähler manifolds, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 43–96. MR 972343, DOI 10.1007/BF02699127
- Ai Guan, Andrey Lazarev, Yunhe Sheng, and Rong Tang, Review of deformation theory II: a homotopical approach, Adv. Math. (China) 49 (2020), no. 3, 278–298 (English, with English and Chinese summaries). MR 4140875
- Li Guo, An introduction to Rota-Baxter algebra, Surveys of Modern Mathematics, vol. 4, International Press, Somerville, MA; Higher Education Press, Beijing, 2012. MR 3025028
- Maxim Kontsevich, Deformation quantization of Poisson manifolds, Lett. Math. Phys. 66 (2003), no. 3, 157–216. MR 2062626, DOI 10.1023/B:MATH.0000027508.00421.bf
- Olga Kravchenko, Strongly homotopy Lie bialgebras and Lie quasi-bialgebras, Lett. Math. Phys. 81 (2007), no. 1, 19–40. MR 2327020, DOI 10.1007/s11005-007-0167-x
- Boris A. Kupershmidt, What a classical $r$-matrix really is, J. Nonlinear Math. Phys. 6 (1999), no. 4, 448–488. MR 1722068, DOI 10.2991/jnmp.1999.6.4.5
- Tom Lada and Jim Stasheff, Introduction to SH Lie algebras for physicists, Internat. J. Theoret. Phys. 32 (1993), no. 7, 1087–1103. MR 1235010, DOI 10.1007/BF00671791
- Tom Lada and Martin Markl, Strongly homotopy Lie algebras, Comm. Algebra 23 (1995), no. 6, 2147–2161. MR 1327129, DOI 10.1080/00927879508825335
- A. Lazarev, Maurer-Cartan moduli and models for function spaces, Adv. Math. 235 (2013), 296–320. MR 3010060, DOI 10.1016/j.aim.2012.11.009
- Andrey Lazarev, Yunhe Sheng, and Rong Tang, Deformations and homotopy theory of relative Rota-Baxter Lie algebras, Comm. Math. Phys. 383 (2021), no. 1, 595–631. MR 4236074, DOI 10.1007/s00220-020-03881-3
- A. Lazarev, Models for classifying spaces and derived deformation theory, Proc. Lond. Math. Soc. (3) 109 (2014), no. 1, 40–64. MR 3237735, DOI 10.1112/plms/pdt069
- Marco Manetti, Lie description of higher obstructions to deforming submanifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6 (2007), no. 4, 631–659. MR 2394413
- Rajan Amit Mehta and Marco Zambon, $L_\infty$-algebra actions, Differential Geom. Appl. 30 (2012), no. 6, 576–587. MR 2996854, DOI 10.1016/j.difgeo.2012.07.006
- S. A. Merkulov, PROP profile of Poisson geometry, Comm. Math. Phys. 262 (2006), no. 1, 117–135. MR 2200884, DOI 10.1007/s00220-005-1385-7
- S. A. Merkulov, Frobenius$_\infty$ invariants of homotopy Gerstenhaber algebras. I, Duke Math. J. 105 (2000), no. 3, 411–461. MR 1801768, DOI 10.1215/S0012-7094-00-10533-9
- S. A. Merkulov, Formality theorem for quantizations of Lie bialgebras, Lett. Math. Phys. 106 (2016), no. 2, 169–195. MR 3451536, DOI 10.1007/s11005-015-0809-3
- N. Reshetikhin, Quantization of Lie bialgebras, Internat. Math. Res. Notices 7 (1992), 143–151. MR 1174619, DOI 10.1155/S1073792892000163
- Yunhe Sheng, A survey on deformations, cohomologies and homotopies of relative Rota-Baxter Lie algebras, Bull. Lond. Math. Soc. 54 (2022), no. 6, 2045–2065. MR 4523749, DOI 10.1112/blms.12712
- Gian-Carlo Rota, Baxter algebras and combinatorial identities. I, II, Bull. Amer. Math. Soc. 75 (1969), 325–329; 75 (1969), 330–334. MR 244070, DOI 10.1090/S0002-9904-1969-12156-7
- M. A. Semenov-Tyan-Shanskiĭ, What a classical $r$-matrix is, Funktsional. Anal. i Prilozhen. 17 (1983), no. 4, 17–33 (Russian). MR 725413
- Theodore Voronov, Higher derived brackets and homotopy algebras, J. Pure Appl. Algebra 202 (2005), no. 1-3, 133–153. MR 2163405, DOI 10.1016/j.jpaa.2005.01.010
Bibliographic Information
- Andrey Lazarev
- Affiliation: Department of Mathematics and Statistics, Lancaster University, Lancaster LA1 4YF, UK
- Email: a.lazarev@lancaster.ac.uk
- Yunhe Sheng
- Affiliation: Department of Mathematics, Jilin University, Changchun 130012, Jilin, China
- ORCID: 0000-0003-0877-7554
- Email: shengyh@jlu.edu.cn
- Rong Tang
- Affiliation: Department of Mathematics, Jilin University, Changchun 130012, Jilin, China
- Email: tangrong@jlu.edu.cn
- Received by editor(s): August 14, 2020
- Received by editor(s) in revised form: September 21, 2022
- Published electronically: January 12, 2023
- Additional Notes: This work was partially supported by EPSRC grant EP/T029455/1
This research was partially supported by NSFC (11922110,12001228). - © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 2921-2945
- MSC (2020): Primary 17B40, 17B56, 17B62, 17B63
- DOI: https://doi.org/10.1090/tran/8844
- MathSciNet review: 4557885