## Another look at the Balázs-Quastel-Seppäläinen theorem

HTML articles powered by AMS MathViewer

- by Yu Gu and Tomasz Komorowski PDF
- Trans. Amer. Math. Soc.
**376**(2023), 2947-2962 Request permission

## Abstract:

We study the KPZ equation with a $1+1-$dimensional spacetime white noise, started at equilibrium, and give a different proof of the main result of Balázs, Quastel, and Seppäläinen [J. Amer. Math. Soc. 24 (2011), pp. 683–708], i.e., the variance of the solution at time $t$ is of order $t^{2/3}$. Instead of using a discrete approximation through the exclusion process and the second class particle, we utilize the connection to directed polymers in random environment. Along the way, we show the annealed density of the stationary continuum directed polymer equals to the two-point covariance function of the stationary stochastic Burgers equation, confirming the physics prediction of Maes and Thiery [J. Stat. Phys. 168 (2017), pp. 937–963].## References

- Gideon Amir, Ivan Corwin, and Jeremy Quastel,
*Probability distribution of the free energy of the continuum directed random polymer in $1+1$ dimensions*, Comm. Pure Appl. Math.**64**(2011), no. 4, 466–537. MR**2796514**, DOI 10.1002/cpa.20347 - Yuri Bakhtin and Liying Li,
*Thermodynamic limit for directed polymers and stationary solutions of the Burgers equation*, Comm. Pure Appl. Math.**72**(2019), no. 3, 536–619. MR**3911894**, DOI 10.1002/cpa.21779 - M. Balázs, E. Cator, and T. Seppäläinen,
*Cube root fluctuations for the corner growth model associated to the exclusion process*, Electron. J. Probab.**11**(2006), no. 42, 1094–1132. MR**2268539**, DOI 10.1214/EJP.v11-366 - M. Balázs, J. Quastel, and T. Seppäläinen,
*Fluctuation exponent of the KPZ/stochastic Burgers equation*, J. Amer. Math. Soc.**24**(2011), no. 3, 683–708. MR**2784327**, DOI 10.1090/S0894-0347-2011-00692-9 - Márton Balázs and Timo Seppäläinen,
*Order of current variance and diffusivity in the asymmetric simple exclusion process*, Ann. of Math. (2)**171**(2010), no. 2, 1237–1265. MR**2630064**, DOI 10.4007/annals.2010.171.1237 - Guillaume Barraquand and Ivan Corwin,
*Random-walk in beta-distributed random environment*, Probab. Theory Related Fields**167**(2017), no. 3-4, 1057–1116. MR**3627433**, DOI 10.1007/s00440-016-0699-z - Lorenzo Bertini and Giambattista Giacomin,
*Stochastic Burgers and KPZ equations from particle systems*, Comm. Math. Phys.**183**(1997), no. 3, 571–607. MR**1462228**, DOI 10.1007/s002200050044 - Alexei Borodin and Ivan Corwin,
*Macdonald processes*, Probab. Theory Related Fields**158**(2014), no. 1-2, 225–400. MR**3152785**, DOI 10.1007/s00440-013-0482-3 - Alexei Borodin, Ivan Corwin, and Patrik Ferrari,
*Free energy fluctuations for directed polymers in random media in $1+1$ dimension*, Comm. Pure Appl. Math.**67**(2014), no. 7, 1129–1214. MR**3207195**, DOI 10.1002/cpa.21520 - Alexei Borodin, Ivan Corwin, Patrik Ferrari, and Bálint Vető,
*Height fluctuations for the stationary KPZ equation*, Math. Phys. Anal. Geom.**18**(2015), no. 1, Art. 20, 95. MR**3366125**, DOI 10.1007/s11040-015-9189-2 - Alexei Borodin, Ivan Corwin, and Daniel Remenik,
*Log-gamma polymer free energy fluctuations via a Fredholm determinant identity*, Comm. Math. Phys.**324**(2013), no. 1, 215–232. MR**3116323**, DOI 10.1007/s00220-013-1750-x - Le Chen and Robert C. Dalang,
*Moments and growth indices for the nonlinear stochastic heat equation with rough initial conditions*, Ann. Probab.**43**(2015), no. 6, 3006–3051. MR**3433576**, DOI 10.1214/14-AOP954 - Le Chen, Davar Khoshnevisan, David Nualart, and Fei Pu,
*Spatial ergodicity for SPDEs via Poincaré-type inequalities*, Electron. J. Probab.**26**(2021), Paper No. 140, 37. MR**4346664**, DOI 10.1214/21-ejp690 - L. Chen, D. Khoshnevisan, D. Nualart, and F. Pu,
*Central limit theorems for spatial averages of the stochastic heat equation via Malliavin-Stein’s method*, Aug. 2020, arXiv preprint arXiv:2008.02408v1. - Ivan Corwin and Alan Hammond,
*KPZ line ensemble*, Probab. Theory Related Fields**166**(2016), no. 1-2, 67–185. MR**3547737**, DOI 10.1007/s00440-015-0651-7 - Ivan Corwin, Timo Seppäläinen, and Hao Shen,
*The strict-weak lattice polymer*, J. Stat. Phys.**160**(2015), no. 4, 1027–1053. MR**3373650**, DOI 10.1007/s10955-015-1267-0 - Ivan Corwin,
*The Kardar-Parisi-Zhang equation and universality class*, Random Matrices Theory Appl.**1**(2012), no. 1, 1130001, 76. MR**2930377**, DOI 10.1142/S2010326311300014 - Alexander Dunlap, Cole Graham, and Lenya Ryzhik,
*Stationary solutions to the stochastic Burgers equation on the line*, Comm. Math. Phys.**382**(2021), no. 2, 875–949. MR**4227165**, DOI 10.1007/s00220-021-04025-x - D. Fisher and D. Huse,
*Directed paths in a random potential*, Phys. Rev. B**43**(1991), no. 13, 10728. - Gregorio R. Moreno Flores, Timo Seppäläinen, and Benedek Valkó,
*Fluctuation exponents for directed polymers in the intermediate disorder regime*, Electron. J. Probab.**19**(2014), no. 89, 28. MR**3263646**, DOI 10.1214/EJP.v19-3307 - Tadahisa Funaki and Jeremy Quastel,
*KPZ equation, its renormalization and invariant measures*, Stoch. Partial Differ. Equ. Anal. Comput.**3**(2015), no. 2, 159–220. MR**3350451**, DOI 10.1007/s40072-015-0046-x - Yaozhong Hu and Khoa Lê,
*Asymptotics of the density of parabolic Anderson random fields*, Ann. Inst. Henri Poincaré Probab. Stat.**58**(2022), no. 1, 105–133 (English, with English and French summaries). MR**4374674**, DOI 10.1214/21-aihp1148 - B. Landon, C. Noack, and Philippe Sosoe,
*KPZ-type fluctuation bounds for interacting diffusions in equilibrium*, 2020, arXiv preprint arXiv:2011.12812. - S. López, and Leandro PR Pimentel,
*On the two-point function of the one-dimensional KPZ equation*, 2022, arXiv preprint arXiv:2208.14987. - Christian Maes and Thimothée Thiery,
*Midpoint distribution of directed polymers in the stationary regime: exact result through linear response*, J. Stat. Phys.**168**(2017), no. 5, 937–963. MR**3682959**, DOI 10.1007/s10955-017-1839-2 - Konstantin Matetski, Jeremy Quastel, and Daniel Remenik,
*The KPZ fixed point*, Acta Math.**227**(2021), no. 1, 115–203. MR**4346267**, DOI 10.4310/acta.2021.v227.n1.a3 - Christian Noack and Philippe Sosoe,
*Central moments of the free energy of the stationary O’Connell-Yor polymer*, Ann. Appl. Probab.**32**(2022), no. 5, 3205–3228. MR**4497844**, DOI 10.1214/21-aap1744 - David Nualart,
*The Malliavin calculus and related topics*, Probability and its Applications (New York), Springer-Verlag, New York, 1995. MR**1344217**, DOI 10.1007/978-1-4757-2437-0 - Leandro P. R. Pimentel,
*Integration by parts and the KPZ two-point function*, Ann. Probab.**50**(2022), no. 5, 1755–1780. MR**4474501**, DOI 10.1214/22-aop1564 - Jeremy Quastel,
*Introduction to KPZ*, Current developments in mathematics, 2011, Int. Press, Somerville, MA, 2012, pp. 125–194. MR**3098078** - Jeremy Quastel and Sourav Sarkar,
*Convergence of exclusion processes and the KPZ equation to the KPZ fixed point*, J. Amer. Math. Soc.**36**(2023), no. 1, 251–289. MR**4495842**, DOI 10.1090/jams/999 - Jeremy Quastel and Herbert Spohn,
*The one-dimensional KPZ equation and its universality class*, J. Stat. Phys.**160**(2015), no. 4, 965–984. MR**3373647**, DOI 10.1007/s10955-015-1250-9 - Tomohiro Sasamoto and Herbert Spohn,
*Exact height distributions for the KPZ equation with narrow wedge initial condition*, Nuclear Phys. B**834**(2010), no. 3, 523–542. MR**2628936**, DOI 10.1016/j.nuclphysb.2010.03.026 - Timo Seppäläinen,
*Scaling for a one-dimensional directed polymer with boundary conditions*, Ann. Probab.**40**(2012), no. 1, 19–73. MR**2917766**, DOI 10.1214/10-AOP617 - Timo Seppäläinen and Benedek Valkó,
*Bounds for scaling exponents for a $1+1$ dimensional directed polymer in a Brownian environment*, ALEA Lat. Am. J. Probab. Math. Stat.**7**(2010), 451–476. MR**2741194** - B. Virág,
*The heat and the landscape I*, Aug. 2020, arXiv preprint arXiv:2008.07241v1.

## Additional Information

**Yu Gu**- Affiliation: Department of Mathematics, University of Maryland, College Park, Maryland 20742
**Tomasz Komorowski**- Affiliation: Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8, 00-656, Warsaw, Poland
- MR Author ID: 307391
- ORCID: 0000-0003-1564-0169
- Received by editor(s): March 9, 2022
- Received by editor(s) in revised form: September 23, 2022
- Published electronically: January 12, 2023
- Additional Notes: The first author was partially supported by the NSF through DMS-2203014. The second author was supported by NCN grant 2020/37/B/ST1/00426.
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**376**(2023), 2947-2962 - MSC (2000): Primary 35R60, 60H07, 60H15
- DOI: https://doi.org/10.1090/tran/8847
- MathSciNet review: 4557886