The Dunkl-Laplace transform and Macdonald’s hypergeometric series
HTML articles powered by AMS MathViewer
- by Dominik Brennecken and Margit Rösler;
- Trans. Amer. Math. Soc. 376 (2023), 2419-2447
- DOI: https://doi.org/10.1090/tran/8860
- Published electronically: January 27, 2023
- HTML | PDF | Request permission
Abstract:
We continue a program generalizing classical results from the analysis on symmetric cones to the Dunkl setting for root systems of type $A$. In particular, we prove a Dunkl-Laplace transform identity for Heckman-Opdam hypergeometric functions of type $A$ and more generally, for the associated Opdam-Cherednik kernel. This is achieved by analytic continuation from a Laplace transform identity for non-symmetric Jack polynomials which was stated, for the symmetric case, as a key conjecture by I.G. Macdonald [arXiv:1309.4568v1]. Our proof for the Jack polynomials is based on Dunkl operator techniques and the raising operator of Knop and Sahi. Moreover, we use these results to establish Laplace transform identities between hypergeometric series in terms of Jack polynomials. Finally, we conclude with a Post-Widder inversion formula for the Dunkl-Laplace transform.References
- Wolfgang Arendt, Charles J. K. Batty, Matthias Hieber, and Frank Neubrander, Vector-valued Laplace transforms and Cauchy problems, Monographs in Mathematics, vol. 96, Birkhäuser Verlag, Basel, 2001. MR 1886588, DOI 10.1007/978-3-0348-5075-9
- T. H. Baker and P. J. Forrester, The Calogero-Sutherland model and generalized classical polynomials, Comm. Math. Phys. 188 (1997), no. 1, 175–216. MR 1471336, DOI 10.1007/s002200050161
- T. H. Baker and P. J. Forrester, Nonsymmetric Jack polynomials and integral kernels, Duke Math. J. 95 (1998), no. 1, 1–50. MR 1646546, DOI 10.1215/S0012-7094-98-09501-1
- A. G. Constantine, Some non-central distribution problems in multivariate analysis, Ann. Math. Statist. 34 (1963), 1270–1285. MR 181056, DOI 10.1214/aoms/1177703863
- Charles F. Dunkl, Differential-difference operators associated to reflection groups, Trans. Amer. Math. Soc. 311 (1989), no. 1, 167–183. MR 951883, DOI 10.1090/S0002-9947-1989-0951883-8
- Charles F. Dunkl, Integral kernels with reflection group invariance, Canad. J. Math. 43 (1991), no. 6, 1213–1227. MR 1145585, DOI 10.4153/CJM-1991-069-8
- Charles F. Dunkl and Yuan Xu, Orthogonal polynomials of several variables, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 155, Cambridge University Press, Cambridge, 2014. MR 3289583, DOI 10.1017/CBO9781107786134
- Jacques Faraut and Semen Gindikin, Deux formules d’inversion pour la transformation de Laplace sur un cône symétrique, C. R. Acad. Sci. Paris Sér. I Math. 310 (1990), no. 1, 5–8 (French, with English summary). MR 1044403
- Jacques Faraut and Adam Korányi, Analysis on symmetric cones, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1994. Oxford Science Publications. MR 1446489
- P. J. Forrester, Log-gases and random matrices, London Mathematical Society Monographs Series, vol. 34, Princeton University Press, Princeton, NJ, 2010. MR 2641363, DOI 10.1515/9781400835416
- Kenneth I. Gross and Donald St. P. Richards, Special functions of matrix argument. I. Algebraic induction, zonal polynomials, and hypergeometric functions, Trans. Amer. Math. Soc. 301 (1987), no. 2, 781–811. MR 882715, DOI 10.1090/S0002-9947-1987-0882715-2
- Gert J. Heckman and Eric M. Opdam, Jacobi polynomials and hypergeometric functions associated with root systems, Encyclopedia of special functions: the Askey-Bateman project. Vol. 2. Multivariable special functions, Cambridge Univ. Press, Cambridge, 2021, pp. 217–257. MR 4421392
- Carl S. Herz, Bessel functions of matrix argument, Ann. of Math. (2) 61 (1955), 474–523. MR 69960, DOI 10.2307/1969810
- Frederik Hoppe, Ein Inversionssatz für die Laplace-Transformation im Dunkl-Setting, Master Thesis, Paderborn University, 2020.
- M. F. E. de Jeu, The Dunkl transform, Invent. Math. 113 (1993), no. 1, 147–162. MR 1223227, DOI 10.1007/BF01244305
- Kevin W. J. Kadell, The Selberg-Jack symmetric functions, Adv. Math. 130 (1997), no. 1, 33–102. MR 1467311, DOI 10.1006/aima.1997.1642
- Jyoichi Kaneko, Selberg integrals and hypergeometric functions associated with Jack polynomials, SIAM J. Math. Anal. 24 (1993), no. 4, 1086–1110. MR 1226865, DOI 10.1137/0524064
- Achim Klenke, Probability theory, Translation from the German edition, Universitext, Springer, London, 2014. A comprehensive course. MR 3112259, DOI 10.1007/978-1-4471-5361-0
- Friedrich Knop and Siddhartha Sahi, A recursion and a combinatorial formula for Jack polynomials, Invent. Math. 128 (1997), no. 1, 9–22. MR 1437493, DOI 10.1007/s002220050134
- Bernhard Krötz and Eric Opdam, Analysis on the crown domain, Geom. Funct. Anal. 18 (2008), no. 4, 1326–1421. MR 2465692, DOI 10.1007/s00039-008-0684-5
- I. G. Macdonald, Commuting differential operators and zonal spherical functions, Algebraic groups Utrecht 1986, Lecture Notes in Math., vol. 1271, Springer, Berlin, 1987, pp. 189–200. MR 911140, DOI 10.1007/BFb0079238
- Ian G. Macdonald, Hypergeometric functions I, arXiv:1309.4568v1 (math.CA).
- Robb J. Muirhead, Aspects of multivariate statistical theory, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons, Inc., New York, 1982. MR 652932, DOI 10.1002/9780470316559
- Frank W. J. Olver, Daniel W. Lozier, Ronald F. Boisvert, and Charles W. Clark (eds.), NIST handbook of mathematical functions, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010. With 1 CD-ROM (Windows, Macintosh and UNIX). MR 2723248
- Eric M. Opdam, Harmonic analysis for certain representations of graded Hecke algebras, Acta Math. 175 (1995), no. 1, 75–121. MR 1353018, DOI 10.1007/BF02392487
- Margit Rösler, Generalized Hermite polynomials and the heat equation for Dunkl operators, Comm. Math. Phys. 192 (1998), no. 3, 519–542. MR 1620515, DOI 10.1007/s002200050307
- Margit Rösler, Dunkl operators: theory and applications, Orthogonal polynomials and special functions (Leuven, 2002) Lecture Notes in Math., vol. 1817, Springer, Berlin, 2003, pp. 93–135. MR 2022853, DOI 10.1007/3-540-44945-0_{3}
- Margit Rösler, Riesz distributions and Laplace transform in the Dunkl setting of type A, J. Funct. Anal. 278 (2020), no. 12, 108506, 29. MR 4078528, DOI 10.1016/j.jfa.2020.108506
- Margit Rösler, Tom Koornwinder, and Michael Voit, Limit transition between hypergeometric functions of type BC and type A, Compos. Math. 149 (2013), no. 8, 1381–1400. MR 3103070, DOI 10.1112/S0010437X13007045
- Margit Rösler and Michael Voit, Markov processes related with Dunkl operators, Adv. in Appl. Math. 21 (1998), no. 4, 575–643. MR 1652182, DOI 10.1006/aama.1998.0609
- Siddhartha Sahi, The binomial formula for nonsymmetric Macdonald polynomials, Duke Math. J. 94 (1998), no. 3, 465–477. MR 1639523, DOI 10.1215/S0012-7094-98-09419-4
- Siddhartha Sahi and Genkai Zhang, Biorthogonal expansion of non-symmetric Jack functions, SIGMA Symmetry Integrability Geom. Methods Appl. 3 (2007), Paper 106, 9. MR 2366916, DOI 10.3842/SIGMA.2007.106
- Bruno Schapira, Contributions to the hypergeometric function theory of Heckman and Opdam: sharp estimates, Schwartz space, heat kernel, Geom. Funct. Anal. 18 (2008), no. 1, 222–250. MR 2399102, DOI 10.1007/s00039-008-0658-7
- Richard P. Stanley, Some combinatorial properties of Jack symmetric functions, Adv. Math. 77 (1989), no. 1, 76–115. MR 1014073, DOI 10.1016/0001-8708(89)90015-7
- E. C. Titchmarsh, The theory of functions, 2nd ed., Oxford University Press, Oxford, 1939. MR 3728294
Bibliographic Information
- Dominik Brennecken
- Affiliation: Institut für Mathematik, Universität Paderborn, Warburger Str. 100, D-33098 Paderborn, Germany
- MR Author ID: 1426650
- Email: bdominik@math.upb.de
- Margit Rösler
- Affiliation: Institut für Mathematik, Universität Paderborn, Warburger Str. 100, D-33098 Paderborn, Germany
- MR Author ID: 312683
- ORCID: 0000-0001-8202-5292
- Email: roesler@math.upb.de
- Received by editor(s): March 3, 2022
- Published electronically: January 27, 2023
- Additional Notes: The authors were supported by DFG grant RO 1264/4-1.
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 2419-2447
- MSC (2020): Primary 33C67; Secondary 33C52, 43A85, 05E05, 33C80
- DOI: https://doi.org/10.1090/tran/8860
- MathSciNet review: 4557870