Joint ergodicity of Hardy field sequences
HTML articles powered by AMS MathViewer
- by Konstantinos Tsinas;
- Trans. Amer. Math. Soc. 376 (2023), 3191-3263
- DOI: https://doi.org/10.1090/tran/8752
- Published electronically: February 10, 2023
- HTML | PDF | Request permission
Abstract:
We study mean convergence of multiple ergodic averages, where the iterates arise from smooth functions of polynomial growth that belong to a Hardy field. Our results include all logarithmico-exponential functions of polynomial growth, such as the functions $t^{3/2}, t\log t$ and $e^{\sqrt {\log t}}$. We show that if all non-trivial linear combinations of the functions $a_1$, …, $a_k$ stay logarithmically away from rational polynomials, then the $L^2$-limit of the ergodic averages $\frac {1}{N} \sum _{n=1}^{N}f_1(T^{\lfloor {a_1(n)}\rfloor }x)\cdot \dots \cdot f_k(T^{\lfloor {a_k(n)}\rfloor }x)$ exists and is equal to the product of the integrals of the functions $f_1$, …, $f_k$ in ergodic systems, which establishes a conjecture of Frantzikinakis. Under some more general conditions on the functions $a_1$, …, $a_k$, we also find characteristic factors for convergence of the above averages and deduce a convergence result for weak-mixing systems.References
- V. Bergelson, Weakly mixing PET, Ergodic Theory Dynam. Systems 7 (1987), no. 3, 337–349. MR 912373, DOI 10.1017/S0143385700004090
- Vitaly Bergelson and Inger J. Håland Knutson, Weak mixing implies weak mixing of higher orders along tempered functions, Ergodic Theory Dynam. Systems 29 (2009), no. 5, 1375–1416. MR 2545011, DOI 10.1017/S0143385708000862
- Vitaly Bergelson, Joel Moreira, and Florian K. Richter, Single and multiple recurrence along non-polynomial sequences, Adv. Math. 368 (2020), 107146, 69. MR 4085142, DOI 10.1016/j.aim.2020.107146
- V. Bergelson, J. Moreira, and F. Richter, Multiple ergodic averages along functions from a Hardy field: convergence, recurrence and combinatorial applications, Preprint, arXiv:2006.03558.
- Michael D. Boshernitzan, Uniform distribution and Hardy fields, J. Anal. Math. 62 (1994), 225–240. MR 1269206, DOI 10.1007/BF02835955
- Michael Boshernitzan, Grigori Kolesnik, Anthony Quas, and Máté Wierdl, Ergodic averaging sequences, J. Anal. Math. 95 (2005), 63–103. MR 2145587, DOI 10.1007/BF02791497
- Qing Chu, Nikos Frantzikinakis, and Bernard Host, Ergodic averages of commuting transformations with distinct degree polynomial iterates, Proc. Lond. Math. Soc. (3) 102 (2011), no. 5, 801–842. MR 2795725, DOI 10.1112/plms/pdq037
- S. Donoso, A. F. Moragues, A. Koutsogiannis, and W. Sun Decomposition of multicorrelation sequences and joint ergodicity, Preprint, arXiv:2106.01058.
- S. Donoso, A. Koutsogiannis, and W. Sun, Seminorms for multiple averages along polynomials and applications to joint ergodicity, J. Anal. Math., To appear.
- Nikos Frantzikinakis, Equidistribution of sparse sequences on nilmanifolds, J. Anal. Math. 109 (2009), 353–395. MR 2585398, DOI 10.1007/s11854-009-0035-y
- Nikos Frantzikinakis, Multiple recurrence and convergence for Hardy sequences of polynomial growth, J. Anal. Math. 112 (2010), 79–135. MR 2762998, DOI 10.1007/s11854-010-0026-z
- Nikos Frantzikinakis, A multidimensional Szemerédi theorem for Hardy sequences of different growth, Trans. Amer. Math. Soc. 367 (2015), no. 8, 5653–5692. MR 3347186, DOI 10.1090/S0002-9947-2014-06275-2
- Nikos Frantzikinakis, Some open problems on multiple ergodic averages, Bull. Hellenic Math. Soc. 60 (2016), 41–90. MR 3613710
- N. Frantzikinakis, Joint ergodicity of sequences, Preprint, arXiv:2102.09967.
- Nikos Frantzikinakis, Joint ergodicity of fractional powers of primes, Forum Math. Sigma 10 (2022), Paper No. e30, 30. MR 4436590, DOI 10.1017/fms.2022.35
- Nikos Frantzikinakis and Máté Wierdl, A Hardy field extension of Szemerédi’s theorem, Adv. Math. 222 (2009), no. 1, 1–43. MR 2531366, DOI 10.1016/j.aim.2009.03.017
- Harry Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Analyse Math. 31 (1977), 204–256. MR 498471, DOI 10.1007/BF02813304
- G. H. Hardy, Properties of Logarithmico-Exponential Functions, Proc. London Math. Soc. (2) 10 (1912), 54–90. MR 1576038, DOI 10.1112/plms/s2-10.1.54
- G. H. Hardy, Orders of infinity. The Infinitärcalcül of Paul du Bois-Reymond, Cambridge Tracts in Mathematics and Mathematical Physics, No. 12, Hafner Publishing Co., New York, 1971. Reprint of the 1910 edition. MR 349922
- Bernard Host, Ergodic seminorms for commuting transformations and applications, Studia Math. 195 (2009), no. 1, 31–49. MR 2539560, DOI 10.4064/sm195-1-3
- Bernard Host and Bryna Kra, Nonconventional ergodic averages and nilmanifolds, Ann. of Math. (2) 161 (2005), no. 1, 397–488. MR 2150389, DOI 10.4007/annals.2005.161.397
- Bernard Host and Bryna Kra, Nilpotent structures in ergodic theory, Mathematical Surveys and Monographs, vol. 236, American Mathematical Society, Providence, RI, 2018. MR 3839640, DOI 10.1090/surv/236
- Dimitris Karageorgos and Andreas Koutsogiannis, Integer part independent polynomial averages and applications along primes, Studia Math. 249 (2019), no. 3, 233–257. MR 3999460, DOI 10.4064/sm171102-18-9
- A. G. Khovanskiĭ, Fewnomials, Translations of Mathematical Monographs, vol. 88, American Mathematical Society, Providence, RI, 1991. Translated from the Russian by Smilka Zdravkovska. MR 1108621, DOI 10.1090/mmono/088
- Andreas Koutsogiannis, Multiple ergodic averages for tempered functions, Discrete Contin. Dyn. Syst. 41 (2021), no. 3, 1177–1205. MR 4201837, DOI 10.3934/dcds.2020314
- A. Koutsogiannis, Multiple ergodic averages for variable polynomials. (2021) arXiv:2101.00534 Preprint.
- A. Leibman, Convergence of multiple ergodic averages along polynomials of several variables, Israel J. Math. 146 (2005), 303–315. MR 2151605, DOI 10.1007/BF02773538
- F. K. Richter, Uniform distribution in nilmanifolds along functions from a Hardy field, Preprint, arXiv:2006.02028.
Bibliographic Information
- Konstantinos Tsinas
- Affiliation: Department of mathematics and applied mathematics, Voutes University Campus, University of Crete, Heraklion 71003, Greece
- Email: kon.tsinas@gmail.com
- Received by editor(s): October 1, 2021
- Received by editor(s) in revised form: May 16, 2022, and May 17, 2022
- Published electronically: February 10, 2023
- Additional Notes: The author was supported by the Research Grant - ELIDEK HFRI-FM17-1684.
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 3191-3263
- MSC (2020): Primary 37A44; Secondary 28D05, 05D10, 11B30
- DOI: https://doi.org/10.1090/tran/8752
- MathSciNet review: 4577331