Generalized surgery on Riemannian manifolds of positive Ricci curvature
HTML articles powered by AMS MathViewer
- by Philipp Reiser;
- Trans. Amer. Math. Soc. 376 (2023), 3397-3418
- DOI: https://doi.org/10.1090/tran/8789
- Published electronically: February 9, 2023
- HTML | PDF | Request permission
Abstract:
The surgery theorem of Wraith states that positive Ricci curvature is preserved under surgery if certain metric and dimensional conditions are satisfied. We generalize this theorem as follows: instead of attaching a product of a sphere and a disc, we glue a sphere bundle over a manifold with a so-called core metric, a type of metric which was recently introduced by Burdick to construct metrics of positive Ricci curvature on connected sums. As applications we extend a result of Burdick on the existence of core metrics on certain sphere bundles and obtain new examples of 6-manifolds with metrics of positive Ricci curvature.References
- Lionel Bérard-Bergery, Certains fibrés à courbure de Ricci positive, C. R. Acad. Sci. Paris Sér. A-B 286 (1978), no. 20, A929–A931 (French, with English summary). MR 500695
- Arthur L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Springer-Verlag, Berlin, 1987. MR 867684, DOI 10.1007/978-3-540-74311-8
- Boris Botvinnik, Mark G. Walsh, and David J. Wraith, Homotopy groups of the observer moduli space of Ricci positive metrics, Geom. Topol. 23 (2019), no. 6, 3003–3040. MR 4039184, DOI 10.2140/gt.2019.23.3003
- Charles P. Boyer and Krzysztof Galicki, Rational homology 5-spheres with positive Ricci curvature, Math. Res. Lett. 9 (2002), no. 4, 521–528. MR 1928872, DOI 10.4310/MRL.2002.v9.n4.a12
- Charles P. Boyer and Krzysztof Galicki, Erratum and addendum for: “Rational homology 5-spheres with positive Ricci curvature” [Math. Res. Lett. 9 (2002), no. 4, 521–528; MR1928872], Math. Res. Lett. 13 (2006), no. 2-3, 463–465. MR 2231131, DOI 10.4310/MRL.2006.v13.n3.a10
- Charles P. Boyer and Krzysztof Galicki, Highly connected manifolds with positive Ricci curvature, Geom. Topol. 10 (2006), 2219–2235. MR 2284055, DOI 10.2140/gt.2006.10.2219
- Charles P. Boyer, Krzysztof Galicki, and Michael Nakamaye, Sasakian geometry, homotopy spheres and positive Ricci curvature, Topology 42 (2003), no. 5, 981–1002. MR 1978045, DOI 10.1016/S0040-9383(02)00027-7
- William Browder, Surgery on simply-connected manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], Band 65, Springer-Verlag, New York-Heidelberg, 1972. MR 358813, DOI 10.1007/978-3-642-50020-6
- Bradley Lewis Burdick, Metrics of Positive Ricci Curvature on Connected Sums: Projective Spaces, Products, and Plumbings, ProQuest LLC, Ann Arbor, MI, 2019. Thesis (Ph.D.)–University of Oregon.
- Bradley Lewis Burdick, Ricci-positive metrics on connected sums of projective spaces, Differential Geom. Appl. 62 (2019), 212–233. MR 3881650, DOI 10.1016/j.difgeo.2018.11.005
- Bradley Lewis Burdick, Metrics of positive Ricci curvature on the connected sums of products with arbitrarily many spheres, Ann. Global Anal. Geom. 58 (2020), no. 4, 433–476. MR 4160777, DOI 10.1007/s10455-020-09732-7
- Bradley Lewis Burdick. The space of positive ricci curvature metrics on spin manifolds. arXiv e-prints, 2020. arXiv:2009.06199
- Diego Corro and Fernando Galaz-García, Positive Ricci curvature on simply-connected manifolds with cohomogeneity-two torus actions, Proc. Amer. Math. Soc. 148 (2020), no. 7, 3087–3097. MR 4099795, DOI 10.1090/proc/14961
- Diarmuid Crowley and David J. Wraith, Positive Ricci curvature on highly connected manifolds, J. Differential Geom. 106 (2017), no. 2, 187–243. MR 3662991, DOI 10.4310/jdg/1497405625
- Jason DeVito, The classification of compact simply connected biquotients in dimension 6 and 7, Math. Ann. 368 (2017), no. 3-4, 1493–1541. MR 3673662, DOI 10.1007/s00208-016-1460-8
- A. Dold and H. Whitney, Classification of oriented sphere bundles over a $4$-complex, Ann. of Math. (2) 69 (1959), 667–677. MR 123331, DOI 10.2307/1970030
- Paul Ehrlich, Metric deformations of curvature. I. Local convex deformations, Geometriae Dedicata 5 (1976), no. 1, 1–23. MR 487886, DOI 10.1007/BF00148134
- L. Zhiyong Gao and S.-T. Yau, The existence of negatively Ricci curved metrics on three-manifolds, Invent. Math. 85 (1986), no. 3, 637–652. MR 848687, DOI 10.1007/BF01390331
- Peter B. Gilkey, JeongHyeong Park, and Wilderich Tuschmann, Invariant metrics of positive Ricci curvature on principal bundles, Math. Z. 227 (1998), no. 3, 455–463. MR 1612669, DOI 10.1007/PL00004385
- Vladimir Gorbatsevich, On compact homogeneous manifolds of low dimension, Geometric Methods in Problems of Algebra and Analysis, vol. 1, 1980.
- Mikhael Gromov and H. Blaine Lawson Jr., The classification of simply connected manifolds of positive scalar curvature, Ann. of Math. (2) 111 (1980), no. 3, 423–434. MR 577131, DOI 10.2307/1971103
- Karsten Grove and Wolfgang Ziller, Cohomogeneity one manifolds with positive Ricci curvature, Invent. Math. 149 (2002), no. 3, 619–646. MR 1923478, DOI 10.1007/s002220200225
- F. Hirzebruch and K. H. Mayer, $\textrm {O}(n)$-Mannigfaltigkeiten, exotische Sphären und Singularitäten, Lecture Notes in Mathematics, No. 57, Springer-Verlag, Berlin-New York, 1968 (German). MR 229251, DOI 10.1007/BFb0074355
- Corey A. Hoelscher, Diffeomorphism type of six-dimensional cohomogeneity one manifolds, Ann. Global Anal. Geom. 38 (2010), no. 1, 1–9. MR 2657838, DOI 10.1007/s10455-010-9196-2
- V. A. Iskovskih, Fano threefolds. I, Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), no. 3, 516–562, 717 (Russian). MR 463151
- V. A. Iskovskih, Fano threefolds. II, Izv. Akad. Nauk SSSR Ser. Mat. 42 (1978), no. 3, 506–549 (Russian). MR 503430
- P. E. Jupp, Classification of certain $6$-manifolds, Proc. Cambridge Philos. Soc. 73 (1973), 293–300. MR 314074, DOI 10.1017/s0305004100076854
- W. S. Massey, On the cohomology ring of a sphere bundle, J. Math. Mech. 7 (1958), 265-289. MR 93763, DOI 10.1512/iumj.1958.7.57020
- John Milnor, Differentiable manifolds which are homotopy spheres, Mimeographed notes, Princeton, 1958.
- Shigefumi Mori and Shigeru Mukai, Classification of Fano $3$-folds with $B_{2}\geq 2$, Manuscripta Math. 36 (1981/82), no. 2, 147–162. MR 641971, DOI 10.1007/BF01170131
- Shigefumi Mori and Shigeru Mukai, Erratum: “Classification of Fano 3-folds with $B_2\geq 2$” [Manuscripta Math. 36 (1981/82), no. 2, 147–162; MR0641971 (83f:14032)], Manuscripta Math. 110 (3): 407, 2003.
- John C. Nash, Positive Ricci curvature on fibre bundles, J. Differential Geometry 14 (1979), no. 2, 241–254. MR 587552
- G. Perelman, Construction of manifolds of positive Ricci curvature with big volume and large Betti numbers, Comparison geometry (Berkeley, CA, 1993–94) Math. Sci. Res. Inst. Publ., vol. 30, Cambridge Univ. Press, Cambridge, 1997, pp. 157–163. MR 1452872
- W. A. Poor, Some exotic spheres with positive Ricci curvature, Math. Ann. 216 (1975), no. 3, 245–252. MR 400110, DOI 10.1007/BF01430964
- Philipp Reiser, Metrics of Positive Ricci Curvature on Simply-Connected Manifolds of Dimension $6k$, arXiv:2210.15610 2022
- R. Schoen and S. T. Yau, On the structure of manifolds with positive scalar curvature, Manuscripta Math. 28 (1979), no. 1-3, 159–183. MR 535700, DOI 10.1007/BF01647970
- Lorenz J. Schwachhöfer and Wilderich Tuschmann, Metrics of positive Ricci curvature on quotient spaces, Math. Ann. 330 (2004), no. 1, 59–91. MR 2091679, DOI 10.1007/s00208-004-0538-x
- Catherine Searle and Frederick Wilhelm, How to lift positive Ricci curvature, Geom. Topol. 19 (2015), no. 3, 1409–1475. MR 3352240, DOI 10.2140/gt.2015.19.1409
- Ji-Ping Sha and DaGang Yang, Positive Ricci curvature on the connected sums of $S^n\times S^m$, J. Differential Geom. 33 (1991), no. 1, 127–137. MR 1085137
- Stephan Stolz, Simply connected manifolds of positive scalar curvature, Ann. of Math. (2) 136 (1992), no. 3, 511–540. MR 1189863, DOI 10.2307/2946598
- David Wraith, Exotic spheres with positive Ricci curvature, J. Differential Geom. 45 (1997), no. 3, 638–649. MR 1472892
- David Wraith, Surgery on Ricci positive manifolds, J. Reine Angew. Math. 501 (1998), 99–113. MR 1637825, DOI 10.1515/crll.1998.082
- David Wraith, Deforming Ricci positive metrics, Tokyo J. Math. 25 (2002), no. 1, 181–189. MR 1908221, DOI 10.3836/tjm/1244208944
- David J. Wraith, Bundle stabilisation and positive Ricci curvature, Differential Geom. Appl. 25 (2007), no. 5, 552–560. MR 2351430, DOI 10.1016/j.difgeo.2007.06.005
- Shing Tung Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), no. 3, 339–411. MR 480350, DOI 10.1002/cpa.3160310304
Bibliographic Information
- Philipp Reiser
- Affiliation: Institut für Algebra und Geometrie, Karlsruher Institut für Technologie (KIT), Germany
- Address at time of publication: Department of Mathematics, University of Fribourg, Switzerland
- MR Author ID: 1409420
- ORCID: 0000-0002-7997-7484
- Email: philipp.reiser@unifr.ch
- Received by editor(s): December 22, 2021
- Received by editor(s) in revised form: July 25, 2022
- Published electronically: February 9, 2023
- Additional Notes: The author acknowledges funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)–281869850 (RTG 2229) and grant GA 2050 2-1 within the SPP 2026 “Geometry at Infinity”
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 3397-3418
- MSC (2020): Primary 53C20
- DOI: https://doi.org/10.1090/tran/8789
- MathSciNet review: 4577335