An 8-dimensional family of simply connected Godeaux surfaces
HTML articles powered by AMS MathViewer
- by Frank-Olaf Schreyer and Isabel Stenger;
- Trans. Amer. Math. Soc. 376 (2023), 3419-3443
- DOI: https://doi.org/10.1090/tran/8813
- Published electronically: February 3, 2023
- HTML | PDF | Request permission
Abstract:
In this paper we describe a construction method for numerical Godeaux surfaces based on homological algebra. We show the existence of an 8-dimensional locally complete family of simply connected numerical Godeaux surfaces.References
- Rebecca Barlow, A simply connected surface of general type with $p_g=0$, Invent. Math. 79 (1985), no. 2, 293–301. MR 778128, DOI 10.1007/BF01388974
- Christian Böhning, Hans-Christian Graf von Bothmer, Ludmil Katzarkov, and Pawel Sosna, Determinantal Barlow surfaces and phantom categories, J. Eur. Math. Soc. (JEMS) 17 (2015), no. 7, 1569–1592. MR 3361723, DOI 10.4171/JEMS/539
- E. Bombieri, Canonical models of surfaces of general type, Inst. Hautes Études Sci. Publ. Math. 42 (1973), 171–219. MR 318163, DOI 10.1007/BF02685880
- Hans-Christian Graf v. Bothmer, Scrollar syzygies of general canonical curves with genus $\leq 8$, Trans. Amer. Math. Soc. 359 (2007), no. 2, 465–488. MR 2255182, DOI 10.1090/S0002-9947-06-04353-4
- David A. Buchsbaum and David Eisenbud, Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension $3$, Amer. J. Math. 99 (1977), no. 3, 447–485. MR 453723, DOI 10.2307/2373926
- Ciro Ciliberto, The degree of the generators of the canonical ring of a surface of general type, Rend. Sem. Mat. Univ. Politec. Torino 41 (1983), no. 3, 83–111 (1984) (Italian, with English summary). MR 778862
- F. Catanese, Babbage’s conjecture, contact of surfaces, symmetric determinantal varieties and applications, Invent. Math. 63 (1981), no. 3, 433–465. MR 620679, DOI 10.1007/BF01389064
- Fabrizio Catanese and Roberto Pignatelli, On simply connected Godeaux surfaces, Complex analysis and algebraic geometry, de Gruyter, Berlin, 2000, pp. 117–153. MR 1760875
- E. Dias and C. Rito, $\mathbb Z/2$-Godeaux surfaces, arXiv:2009.12645, 2020.
- Shiro Goto and Keiichi Watanabe, On graded rings. I, J. Math. Soc. Japan 30 (1978), no. 2, 179–213. MR 494707, DOI 10.2969/jmsj/03020179
- D. R. Grayson and M. E. Stillman, Macaulay2, a software system for research in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/
- Yongnam Lee, Bicanonical pencil of a determinantal Barlow surface, Trans. Amer. Math. Soc. 353 (2001), no. 3, 893–905. MR 1707700, DOI 10.1090/S0002-9947-00-02609-X
- Yoichi Miyaoka, Tricanonical maps of numerical Godeaux surfaces, Invent. Math. 34 (1976), no. 2, 99–111. MR 409481, DOI 10.1007/BF01425477
- M. Reid, The complete intersection of two or more quadrics. Thesis, University of Cambridge, 1972.
- Miles Reid, Surfaces with $p_{g}=0$, $K^{2}=1$, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 25 (1978), no. 1, 75–92. MR 494596
- F.-O. Schreyer, An experimental approach to numerical Godeaux surfaces. Oberwolfach Report “Komplexe Algebraische Geometrie”, vol. 7, 2005, pp.434–436.
- F.-O. Schreyer and I. Stenger, Marked Godeaux surfaces with special bicanonical fibers. Available at arXiv:2201.12065.
- F.-O. Schreyer and I. Stenger, NumericalGodeaux, Macaulay2-package for the construction of numerical Godeaux surfaces, Version 1.1. Available at https://www.math.uni-sb.de/ag/lazic/stenger/M2/Macaulay2/NumericalGodeaux.m2.
- I. Stenger, A homological approach to numerical Godeaux surfaces. PhD thesis, 2018, Technische Universität Kaiserslautern.
- Isabel Stenger, A structure result for Gorenstein algebras of odd codimension, J. Algebra 589 (2022), 173–187. MR 4321616, DOI 10.1016/j.jalgebra.2021.09.016
Bibliographic Information
- Frank-Olaf Schreyer
- Affiliation: Mathematik und Informatik, Universität des Saarlandes, Campus E2 4, D-66123 Saarbrücken, Germany
- MR Author ID: 156975
- ORCID: 0000-0002-5861-7850
- Email: schreyer@math.uni-sb.de
- Isabel Stenger
- Affiliation: Mathematik und Informatik, Universität des Saarlandes, Campus E2 4, D-66123 Saarbrücken, Germany
- MR Author ID: 1346296
- Email: stenger@math.uni-sb.de
- Received by editor(s): March 30, 2022
- Received by editor(s) in revised form: August 19, 2022
- Published electronically: February 3, 2023
- Additional Notes: This work was funded by the Deutsche Forschungsgemeinschaft, SfB-TRR 195
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 3419-3443
- MSC (2020): Primary 14J10, 14J29, 13D02
- DOI: https://doi.org/10.1090/tran/8813
- MathSciNet review: 4577336