$1$-Point functions for symmetrized Heisenberg and symmetrized lattice vertex operator algebras
HTML articles powered by AMS MathViewer
- by Geoffrey Mason and Michael H. Mertens;
- Trans. Amer. Math. Soc. 376 (2023), 3663-3693
- DOI: https://doi.org/10.1090/tran/8861
- Published electronically: February 10, 2023
- HTML | PDF | Request permission
Abstract:
We obtain explicit formulas for the $1$-point functions of all states in the symmetrized Heisenberg algebra $M^+$ and symmetrized lattice vertex operator algebras $V_L^+$. For this we employ a new $\mathbf {Z}_2$-twisted variant of so-called Zhu recursion.References
- Chongying Dong, Haisheng Li, and Geoffrey Mason, Modular-invariance of trace functions in orbifold theory and generalized Moonshine, Comm. Math. Phys. 214 (2000), no. 1, 1–56. MR 1794264, DOI 10.1007/s002200000242
- Chongying Dong and Geoffrey Mason, Transformation laws for theta functions, Proceedings on Moonshine and related topics (Montréal, QC, 1999) CRM Proc. Lecture Notes, vol. 30, Amer. Math. Soc., Providence, RI, 2001, pp. 15–26. MR 1877753, DOI 10.1090/crmp/030/02
- Chongying Dong and Geoffrey Mason, Monstrous Moonshine of higher weight, Acta Math. 185 (2000), no. 1, 101–121. MR 1794187, DOI 10.1007/BF02392713
- Chongying Dong, Geoffrey Mason, and Kiyokazu Nagatomo, Quasi-modular forms and trace functions associated to free boson and lattice vertex operator algebras, Internat. Math. Res. Notices 8 (2001), 409–427. MR 1827085, DOI 10.1155/S1073792801000204
- Chongying Dong, Xingjun Lin, and Siu-Hung Ng, Congruence property in conformal field theory, Algebra Number Theory 9 (2015), no. 9, 2121–2166. MR 3435813, DOI 10.2140/ant.2015.9.2121
- Eberhard Freitag and Rolf Busam, Funktionentheorie, Springer-Lehrbuch. [Springer Textbook], Springer-Verlag, Berlin, 1993 (German, with German summary). MR 1250380, DOI 10.1007/978-3-662-07350-6
- Igor B. Frenkel, Yi-Zhi Huang, and James Lepowsky, On axiomatic approaches to vertex operator algebras and modules, Mem. Amer. Math. Soc. 104 (1993), no. 494, viii+64. MR 1142494, DOI 10.1090/memo/0494
- Igor Frenkel, James Lepowsky, and Arne Meurman, Vertex operator algebras and the Monster, Pure and Applied Mathematics, vol. 134, Academic Press, Inc., Boston, MA, 1988. MR 996026
- E. Hecke, Analytische Arithmetik der positiven quadratischen Formen, Danske Vid. Selsk. Mat.-Fys. Medd. 17 (1940), no. 12, 134 (German). MR 3665
- Yi-Zhi Huang, Rigidity and modularity of vertex tensor categories, Commun. Contemp. Math. 10 (2008), no. suppl. 1, 871–911. MR 2468370, DOI 10.1142/S0219199708003083
- Katherine Lambert Hurley, Strongly holomorphic c = 24 vertex operator algebras and modular forms, ProQuest LLC, Ann Arbor, MI, 2002. Thesis (Ph.D.)–University of California, Santa Cruz. MR 2703520
- Katherine L. Hurley, Highest-weight vectors of the moonshine module with non-zero graded trace, J. Algebra 261 (2003), no. 2, 411–433. MR 1966636, DOI 10.1016/S0021-8693(02)00668-3
- James Lepowsky and Haisheng Li, Introduction to vertex operator algebras and their representations, Progress in Mathematics, vol. 227, Birkhäuser Boston, Inc., Boston, MA, 2004. MR 2023933, DOI 10.1007/978-0-8176-8186-9
- Geoffrey Mason, Lattice subalgebras of strongly regular vertex operator algebras, Conformal field theory, automorphic forms and related topics, Contrib. Math. Comput. Sci., vol. 8, Springer, Heidelberg, 2014, pp. 31–53. MR 3559200
- Geoffrey Mason and Michael Tuite, Vertex operators and modular forms, A window into zeta and modular physics, Math. Sci. Res. Inst. Publ., vol. 57, Cambridge Univ. Press, Cambridge, 2010, pp. 183–278. MR 2648364
- Geoffrey Mason and Michael P. Tuite, Torus chiral $n$-point functions for free boson and lattice vertex operator algebras, Comm. Math. Phys. 235 (2003), no. 1, 47–68. MR 1969720, DOI 10.1007/s00220-002-0772-6
- Geoffrey Mason and Michael P. Tuite, Free bosonic vertex operator algebras on genus two Riemann surfaces II, Conformal field theory, automorphic forms and related topics, Contrib. Math. Comput. Sci., vol. 8, Springer, Heidelberg, 2014, pp. 183–225. MR 3559205
- Geoffrey Mason, Michael P. Tuite, and Alexander Zuevsky, Torus $n$-point functions for $\Bbb R$-graded vertex operator superalgebras and continuous fermion orbifolds, Comm. Math. Phys. 283 (2008), no. 2, 305–342. MR 2430636, DOI 10.1007/s00220-008-0510-9
- Larry Rolen, A new construction of Eisenstein’s completion of the Weierstrass zeta function, Proc. Amer. Math. Soc. 144 (2016), no. 4, 1453–1456. MR 3451223, DOI 10.1090/proc/12813
- Bruno Schoeneberg, Das Verhalten von mehrfachen Thetareihen bei Modulsubstitutionen, Math. Ann. 116 (1939), no. 1, 511–523 (German). MR 1513241, DOI 10.1007/BF01597371
- Bruno Schoeneberg, Elliptic modular functions: an introduction, Die Grundlehren der mathematischen Wissenschaften, Band 203, Springer-Verlag, New York-Heidelberg, 1974. Translated from the German by J. R. Smart and E. A. Schwandt. MR 412107, DOI 10.1007/978-3-642-65663-7
- A. Weil, Elliptic functions according to Eisenstein and Kronecker, Springer-Verlag, New York, 1976.
- Don Zagier, Modular forms and differential operators, Proc. Indian Acad. Sci. Math. Sci. 104 (1994), no. 1, 57–75. K. G. Ramanathan memorial issue. MR 1280058, DOI 10.1007/BF02830874
- Jan Hendrik Bruinier, Gerard van der Geer, Günter Harder, and Don Zagier, The 1-2-3 of modular forms, Universitext, Springer-Verlag, Berlin, 2008. Lectures from the Summer School on Modular Forms and their Applications held in Nordfjordeid, June 2004; Edited by Kristian Ranestad. MR 2385372, DOI 10.1007/978-3-540-74119-0
- Shaul Zemel, A direct evaluation of the periods of the Weierstrass zeta function, Ann. Univ. Ferrara Sez. VII Sci. Mat. 60 (2014), no. 2, 495–505. MR 3275423, DOI 10.1007/s11565-013-0186-8
- Yongchang Zhu, Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc. 9 (1996), no. 1, 237–302. MR 1317233, DOI 10.1090/S0894-0347-96-00182-8
Bibliographic Information
- Geoffrey Mason
- Affiliation: Department of Mathematics, University of California Santa Cruz, California 95064
- MR Author ID: 189334
- Email: gem@ucsc.edu
- Michael H. Mertens
- Affiliation: Department Mathematik/Informatik, Universität zu Köln, Weyertal 86–90, 50931 Köln, Germany
- MR Author ID: 1030533
- ORCID: 0000-0002-8345-6489
- Email: mmertens@math.uni-koeln.de
- Received by editor(s): April 21, 2022
- Received by editor(s) in revised form: September 7, 2022, and October 25, 2022
- Published electronically: February 10, 2023
- Additional Notes: The authors were supported by grants $\# 62524$ and $427007$ respectively from the Simons Foundation.
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 3663-3693
- MSC (2020): Primary 17B69, 11F11
- DOI: https://doi.org/10.1090/tran/8861
- MathSciNet review: 4577344