Quadratic Chabauty and $p$-adic Gross–Zagier
HTML articles powered by AMS MathViewer
- by Sachi Hashimoto;
- Trans. Amer. Math. Soc. 376 (2023), 3725-3760
- DOI: https://doi.org/10.1090/tran/8862
- Published electronically: February 28, 2023
- HTML | PDF
Abstract:
Let $X$ be a quotient of the modular curve $X_0(N)$ whose Jacobian $J_X$ is a simple factor of $J_0(N)^{new}$ over $\mathbf {Q}$. Let $f$ be the newform of level $N$ and weight $2$ associated with $J_X$; assume $f$ has analytic rank $1$. We give analytic methods for determining the rational points of $X$ using quadratic Chabauty by computing two $p$-adic Gross–Zagier formulas for $f$. Quadratic Chabauty requires a supply of rational points on the curve or its Jacobian; this new method eliminates this requirement. To achieve this, we give an algorithm to compute the special value of the anticyclotomic $p$-adic $L$-function of $f$ constructed by Bertolini, Darmon, and Prasanna [Duke Math. J. 162 (2013), pp. 1033–1148], which lies outside of the range of interpolation.References
- Jennifer S. Balakrishnan and Amnon Besser, Coleman-Gross height pairings and the $p$-adic sigma function, J. Reine Angew. Math. 698 (2015), 89–104. MR 3294652, DOI 10.1515/crelle-2012-0095
- J. S. Balakrishnan, A. J. Best, F. Bianchi, B. Lawrence, J. S. Müller, N. Triantafillou, and J. Vonk, Two recent $p$-adic approaches towards the (effective) Mordell conjecture, Arithmetic L-functions and differential geometric methods, Progr. Math., vol. 338, Birkhäuser/Springer, Cham, [2021] ©2021, pp. 31–74. MR 4311238, DOI 10.1007/978-3-030-65203-6_{2}
- Jennifer S. Balakrishnan, Amnon Besser, and J. Steffen Müller, Quadratic Chabauty: $p$-adic heights and integral points on hyperelliptic curves, J. Reine Angew. Math. 720 (2016), 51–79. MR 3565969, DOI 10.1515/crelle-2014-0048
- Jennifer S. Balakrishnan, Amnon Besser, and J. Steffen Müller, Computing integral points on hyperelliptic curves using quadratic Chabauty, Math. Comp. 86 (2017), no. 305, 1403–1434. MR 3614022, DOI 10.1090/mcom/3130
- Massimo Bertolini, Francesc Castella, Henri Darmon, Samit Dasgupta, Kartik Prasanna, and Victor Rotger, $p$-adic $L$-functions and Euler systems: a tale in two trilogies, Automorphic forms and Galois representations. Vol. 1, London Math. Soc. Lecture Note Ser., vol. 414, Cambridge Univ. Press, Cambridge, 2014, pp. 52–101. MR 3444223
- Jennifer S. Balakrishnan and Netan Dogra, Quadratic Chabauty and rational points, I: $p$-adic heights, Duke Math. J. 167 (2018), no. 11, 1981–2038. With an appendix by J. Steffen Müller. MR 3843370, DOI 10.1215/00127094-2018-0013
- Jennifer S. Balakrishnan and Netan Dogra, Quadratic Chabauty and rational points II: Generalised height functions on Selmer varieties, Int. Math. Res. Not. IMRN 15 (2021), 11923–12008. MR 4294137, DOI 10.1093/imrn/rnz362
- Jennifer S. Balakrishnan, Netan Dogra, Steffen J. Müller, Jan Tuitman, and Jan Vonk, Magma code, https://github.com/steffenmueller/QCMod.
- Jennifer Balakrishnan, Netan Dogra, J. Steffen Müller, Jan Tuitman, and Jan Vonk, Explicit Chabauty-Kim for the split Cartan modular curve of level 13, Ann. of Math. (2) 189 (2019), no. 3, 885–944. MR 3961086, DOI 10.4007/annals.2019.189.3.6
- Jennifer S. Balakrishnan, Netan Dogra, J. Steffen Müller, Jan Tuitman, and Jan Vonk. Quadratic Chabauty for modular curves: Algorithms and examples, 2021. Preprint, arXiv:1501.04657.
- Massimo Bertolini, Henri Darmon, and Kartik Prasanna, Generalized Heegner cycles and $p$-adic Rankin $L$-series, Duke Math. J. 162 (2013), no. 6, 1033–1148. With an appendix by Brian Conrad. MR 3053566, DOI 10.1215/00127094-2142056
- Massimo Bertolini, Henri Darmon, and Kartik Prasanna, $p$-adic $L$-functions and the coniveau filtration on Chow groups, J. Reine Angew. Math. 731 (2017), 21–86. With an appendix by Brian Conrad. MR 3709060, DOI 10.1515/crelle-2014-0150
- Amnon Besser, The $p$-adic height pairings of Coleman-Gross and of Nekovář, Number theory, CRM Proc. Lecture Notes, vol. 36, Amer. Math. Soc., Providence, RI, 2004, pp. 13–25. MR 2076563, DOI 10.1090/crmp/036/02
- Amnon Besser, Heidelberg lectures on Coleman integration, The arithmetic of fundamental groups—PIA 2010, Contrib. Math. Comput. Sci., vol. 2, Springer, Heidelberg, 2012, pp. 3–52. MR 3220512, DOI 10.1007/978-3-642-23905-2_{1}
- Matthew H. Baker, Enrique González-Jiménez, Josep González, and Bjorn Poonen, Finiteness results for modular curves of genus at least 2, Amer. J. Math. 127 (2005), no. 6, 1325–1387. MR 2183527, DOI 10.1353/ajm.2005.0037
- Francesc Bars, Josep González, and Xavier Xarles, Hyperelliptic parametrizations of $\Bbb {Q}$ curves, Ramanujan J. 56 (2021), no. 1, 103–120. MR 4311678, DOI 10.1007/s11139-020-00281-y
- Francesca Bianchi, Quadratic Chabauty for (bi)elliptic curves and Kim’s conjecture, Algebra Number Theory 14 (2020), no. 9, 2369–2416. MR 4172711, DOI 10.2140/ant.2020.14.2369
- Jennifer S. Balakrishnan, J. Steffen Müller, and William A. Stein, A $p$-adic analogue of the conjecture of Birch and Swinnerton-Dyer for modular abelian varieties, Math. Comp. 85 (2016), no. 298, 983–1016. MR 3434891, DOI 10.1090/mcom/3029
- Robert F. Coleman and Benedict H. Gross, $p$-adic heights on curves, Algebraic number theory, Adv. Stud. Pure Math., vol. 17, Academic Press, Boston, MA, 1989, pp. 73–81. MR 1097610, DOI 10.2969/aspm/01710073
- Robert F. Coleman, Torsion points on curves and $p$-adic abelian integrals, Ann. of Math. (2) 121 (1985), no. 1, 111–168. MR 782557, DOI 10.2307/1971194
- Robert F. Coleman, The universal vectorial bi-extension and $p$-adic heights, Invent. Math. 103 (1991), no. 3, 631–650. MR 1091621, DOI 10.1007/BF01239529
- Dan J. Collins, Numerical computation of Petersson inner products and $q$-expansions, 2018. Preprint, arXiv:1802.09740.
- J. E. Cremona, Computing the degree of the modular parametrization of a modular elliptic curve, Math. Comp. 64 (1995), no. 211, 1235–1250. MR 1297466, DOI 10.1090/S0025-5718-1995-1297466-0
- Netan Dogra and Samuel Le Fourn, Quadratic Chabauty for modular curves and modular forms of rank one, Math. Ann. 380 (2021), no. 1-2, 393–448. MR 4263688, DOI 10.1007/s00208-020-02112-3
- Tim Dokchitser, Computing special values of motivic $L$-functions, Experiment. Math. 13 (2004), no. 2, 137–149. MR 2068888, DOI 10.1080/10586458.2004.10504528
- Henri Darmon, Victor Rotger, and Ignacio Sols, Iterated integrals, diagonal cycles and rational points on elliptic curves, Publications mathématiques de Besançon. Algèbre et théorie des nombres, 2012/2, Publ. Math. Besançon Algèbre Théorie Nr., vol. 2012/, Presses Univ. Franche-Comté, Besançon, 2012, pp. 19–46 (English, with English and French summaries). MR 3074917
- Ehud de Shalit, Iwasawa theory of elliptic curves with complex multiplication, Perspectives in Mathematics, vol. 3, Academic Press, Inc., Boston, MA, 1987. $p$-adic $L$ functions. MR 917944
- Steven D. Galbraith, Equations for modular curves, 1996. Ph.D. Thesis, University of Oxford.
- B. Gross, W. Kohnen, and D. Zagier, Heegner points and derivatives of $L$-series. II, Math. Ann. 278 (1987), no. 1-4, 497–562. MR 909238, DOI 10.1007/BF01458081
- Benedict H. Gross, Heegner points on $X_0(N)$, Modular forms (Durham, 1983) Ellis Horwood Ser. Math. Appl.: Statist. Oper. Res., Horwood, Chichester, 1984, pp. 87–105. MR 803364
- Benedict H. Gross and Don B. Zagier, Heegner points and derivatives of $L$-series, Invent. Math. 84 (1986), no. 2, 225–320. MR 833192, DOI 10.1007/BF01388809
- Sachi Hashimoto, Code. https://github.com/sachihashimoto/chabauty-gz.
- Minhyong Kim, The unipotent Albanese map and Selmer varieties for curves, Publ. Res. Inst. Math. Sci. 45 (2009), no. 1, 89–133. MR 2512779, DOI 10.2977/prims/1234361156
- Shinichi Kobayashi, The $p$-adic Gross-Zagier formula for elliptic curves at supersingular primes, Invent. Math. 191 (2013), no. 3, 527–629. MR 3020170, DOI 10.1007/s00222-012-0400-9
- Minhyong Kim and Akio Tamagawa, The $l$-component of the unipotent Albanese map, Math. Ann. 340 (2008), no. 1, 223–235. MR 2349775, DOI 10.1007/s00208-007-0151-x
- The LMFDB Collaboration, The L-functions and modular forms database, http://www.lmfdb.org, 2022. [Online; accessed 21 February 2022].
- Barry Mazur, William Stein, and John Tate, Computation of $p$-adic heights and log convergence, Doc. Math. Extra Vol. (2006), 577–614. MR 2290599
- B. Mazur and J. Tate, Canonical height pairings via biextensions, Arithmetic and geometry, Vol. I, Progr. Math., vol. 35, Birkhäuser Boston, Boston, MA, 1983, pp. 195–237. MR 717595
- B. Mazur, J. Tate, and J. Teitelbaum, On $p$-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Invent. Math. 84 (1986), no. 1, 1–48. MR 830037, DOI 10.1007/BF01388731
- Jan Nekovář, On $p$-adic height pairings, Séminaire de Théorie des Nombres, Paris, 1990–91, Progr. Math., vol. 108, Birkhäuser Boston, Boston, MA, 1993, pp. 127–202. MR 1263527, DOI 10.1007/s10107-005-0696-y
- Robert Pollack, Overconvergent modular symbols, Computations with modular forms, Contrib. Math. Comput. Sci., vol. 6, Springer, Cham, 2014, pp. 69–105. MR 3381449, DOI 10.1007/978-3-319-03847-6_{3}
- Bernadette Perrin-Riou, Points de Heegner et dérivées de fonctions $L$ $p$-adiques, Invent. Math. 89 (1987), no. 3, 455–510 (French). MR 903381, DOI 10.1007/BF01388982
- Robert Pollack and Glenn Stevens, Overconvergent modular symbols and $p$-adic $L$-functions, Ann. Sci. Éc. Norm. Supér. (4) 44 (2011), no. 1, 1–42 (English, with English and French summaries). MR 2760194, DOI 10.24033/asens.2139
- Karl Rubin, Elliptic curves with complex multiplication and the conjecture of Birch and Swinnerton-Dyer, Invent. Math. 64 (1981), no. 3, 455–470. MR 632985, DOI 10.1007/BF01389277
- Karl Rubin, $p$-adic variants of the Birch and Swinnerton-Dyer conjecture for elliptic curves with complex multiplication, $p$-adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991) Contemp. Math., vol. 165, Amer. Math. Soc., Providence, RI, 1994, pp. 71–80. MR 1279603, DOI 10.1090/conm/165/01614
- Peter Schneider, $p$-adic height pairings. I, Invent. Math. 69 (1982), no. 3, 401–409. MR 679765, DOI 10.1007/BF01389362
- Goro Shimura, On some arithmetic properties of modular forms of one and several variables, Ann. of Math. (2) 102 (1975), no. 3, 491–515. MR 491519, DOI 10.2307/1971041
- William Arthur Stein, Explicit approaches to modular abelian varieties, ProQuest LLC, Ann Arbor, MI, 2000. Thesis (Ph.D.)–University of California, Berkeley. MR 2701042
- Eric Urban, Nearly overconvergent modular forms, Iwasawa theory 2012, Contrib. Math. Comput. Sci., vol. 7, Springer, Heidelberg, 2014, pp. 401–441. MR 3586822
- Fernando Rodriguez Villegas and Don Zagier, Square roots of central values of Hecke $L$-series, Advances in number theory (Kingston, ON, 1991) Oxford Sci. Publ., Oxford Univ. Press, New York, 1993, pp. 81–99. MR 1368412
- John Voight and David Zureick-Brown, The canonical ring of a stacky curve, Mem. Amer. Math. Soc. 277 (2022), no. 1362, v+144. MR 4403928, DOI 10.1090/memo/1362
- Don Zagier, Modular forms and differential operators, Proc. Indian Acad. Sci. Math. Sci. 104 (1994), no. 1, 57–75. K. G. Ramanathan memorial issue. MR 1280058, DOI 10.1007/BF02830874
- Don Zagier, Elliptic modular forms and their applications, The 1-2-3 of modular forms, Universitext, Springer, Berlin, 2008, pp. 1–103. MR 2409678, DOI 10.1007/978-3-540-74119-0_{1}
Bibliographic Information
- Sachi Hashimoto
- Affiliation: Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, 04103 Leipzig, Germany
- MR Author ID: 1491436
- ORCID: 0000-0002-8936-5545
- Email: sachi.hashimoto@mis.mpg.de
- Received by editor(s): June 28, 2022
- Received by editor(s) in revised form: November 2, 2022
- Published electronically: February 28, 2023
- Additional Notes: While preparing this work the author was supported by National Science Foundation grant DGE-1840990.
- © Copyright 2023 Sachi Hashimoto
- Journal: Trans. Amer. Math. Soc. 376 (2023), 3725-3760
- MSC (2020): Primary 14G05, 11G30; Secondary 11F67
- DOI: https://doi.org/10.1090/tran/8862
- MathSciNet review: 4577346