Symmetry and monotonicity results for solutions of vectorial $p$-Stokes systems
HTML articles powered by AMS MathViewer
- by Rafael López-Soriano, Luigi Montoro and Berardino Sciunzi;
- Trans. Amer. Math. Soc. 376 (2023), 3493-3514
- DOI: https://doi.org/10.1090/tran/8867
- Published electronically: February 28, 2023
- HTML | PDF | Request permission
Abstract:
In this paper we shall study qualitative properties of a $p$-Stokes type system, namely \begin{equation*} -{\boldsymbol \Delta }_p{\boldsymbol u}=-\operatorname {\mathbf {div}}(|D{\boldsymbol u}|^{p-2}D{\boldsymbol u}) = {\boldsymbol f}(x,{\boldsymbol u}) \text { in $\Omega $}, \end{equation*} where ${\boldsymbol \Delta }_p$ is the $p$-Laplacian vectorial operator. More precisely, under suitable assumptions on the domain $\Omega$ and the function $\boldsymbol { f}$, it is deduced that system solutions are symmetric and monotone. Our main results are derived from a vectorial version of the weak and strong comparison principles, which enable to proceed with the moving-planes technique for systems. As far as we know, these are the first qualitative kind results involving vectorial operators.References
- Anna Kh. Balci, Andrea Cianchi, Lars Diening, and Vladimir Maz’ya, A pointwise differential inequality and second-order regularity for nonlinear elliptic systems, Math. Ann. 383 (2022), no. 3-4, 1775–1824. MR 4458389, DOI 10.1007/s00208-021-02249-9
- H. Beirão da Veiga and F. Crispo, On the global $W^{2,q}$ regularity for nonlinear $N$-systems of the $p$-Laplacian type in $n$ space variables, Nonlinear Anal. 75 (2012), no. 11, 4346–4354. MR 2921994, DOI 10.1016/j.na.2012.03.021
- Hugo Beirão da Veiga and Francesca Crispo, On the global regularity for nonlinear systems of the $p$-Laplacian type, Discrete Contin. Dyn. Syst. Ser. S 6 (2013), no. 5, 1173–1191. MR 3039691, DOI 10.3934/dcdss.2013.6.1173
- Luigi C. Berselli, Lars Diening, and Michael Růžička, Existence of strong solutions for incompressible fluids with shear dependent viscosities, J. Math. Fluid Mech. 12 (2010), no. 1, 101–132. MR 2602916, DOI 10.1007/s00021-008-0277-y
- R. Byron Bird, Polymeric liquids: from molecular models to constitutive equations, Viscoelasticity and rheology (Madison, Wis., 1984) Academic Press, Orlando, FL, 1985, pp. 105–123. MR 830199
- Andrea Cianchi and Vladimir G. Maz’ya, Optimal second-order regularity for the $p$-Laplace system, J. Math. Pures Appl. (9) 132 (2019), 41–78 (English, with English and French summaries). MR 4030249, DOI 10.1016/j.matpur.2019.02.015
- F. Crispo and P. Maremonti, A high regularity result of solutions to modified $p$-Stokes equations, Nonlinear Anal. 118 (2015), 97–129. MR 3325608, DOI 10.1016/j.na.2014.10.017
- Lucio Damascelli, Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results, Ann. Inst. H. Poincaré C Anal. Non Linéaire 15 (1998), no. 4, 493–516 (English, with English and French summaries). MR 1632933, DOI 10.1016/S0294-1449(98)80032-2
- Lucio Damascelli and Filomena Pacella, Monotonicity and symmetry of solutions of $p$-Laplace equations, $1<p<2$, via the moving plane method, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 26 (1998), no. 4, 689–707. MR 1648566
- Lucio Damascelli and Berardino Sciunzi, Regularity, monotonicity and symmetry of positive solutions of $m$-Laplace equations, J. Differential Equations 206 (2004), no. 2, 483–515. MR 2096703, DOI 10.1016/j.jde.2004.05.012
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. MR 1814364, DOI 10.1007/978-3-642-61798-0
- Jacques-Louis Lions, Sur certaines équations paraboliques non linéaires, Bull. Soc. Math. France 93 (1965), 155–175 (French). MR 194760, DOI 10.24033/bsmf.1620
- J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris; Gauthier-Villars, Paris, 1969 (French). MR 259693
- Tuomo Kuusi and Giuseppe Mingione, A nonlinear Stein theorem, Calc. Var. Partial Differential Equations 51 (2014), no. 1-2, 45–86. MR 3247381, DOI 10.1007/s00526-013-0666-9
- Tuomo Kuusi and Giuseppe Mingione, Vectorial nonlinear potential theory, J. Eur. Math. Soc. (JEMS) 20 (2018), no. 4, 929–1004. MR 3779689, DOI 10.4171/JEMS/780
- J. Málek and K. R. Rajagopal, Mathematical issues concerning the Navier-Stokes equations and some of its generalizations, Evolutionary equations. Vol. II, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2005, pp. 371–459. MR 2182831
- J. Málek, K. R. Rajagopal, and M. Růžička, Existence and regularity of solutions and the stability of the rest state for fluids with shear dependent viscosity, Math. Models Methods Appl. Sci. 5 (1995), no. 6, 789–812. MR 1348587, DOI 10.1142/S0218202595000449
- Giuseppe Mingione, Regularity of minima: an invitation to the dark side of the calculus of variations, Appl. Math. 51 (2006), no. 4, 355–426. MR 2291779, DOI 10.1007/s10778-006-0110-3
- Patrizia Pucci and James Serrin, The maximum principle, Progress in Nonlinear Differential Equations and their Applications, vol. 73, Birkhäuser Verlag, Basel, 2007. MR 2356201, DOI 10.1007/978-3-7643-8145-5
- Giovanni Maria Troianiello, Elliptic differential equations and obstacle problems, The University Series in Mathematics, Plenum Press, New York, 1987. MR 1094820, DOI 10.1007/978-1-4899-3614-1
Bibliographic Information
- Rafael López-Soriano
- Affiliation: Departamento de Análisis Matemático, Universidad de Granada, Campus Fuentenueva, 18071 Granada, Spain
- ORCID: 0000-0003-4345-4099
- Email: ralopezs@ugr.es
- Luigi Montoro
- Affiliation: Dipartimento di Matematica e Informatica, Università della Calabria, Ponte Pietro Bucci 31B, 87036 Arcavacata di Rende, Cosenza, Italy
- MR Author ID: 890776
- Email: montoro@mat.unical.it
- Berardino Sciunzi
- Affiliation: Dipartimento di Matematica e Informatica, Università della Calabria, Ponte Pietro Bucci 31B, 87036 Arcavacata di Rende, Cosenza, Italy
- MR Author ID: 685748
- Email: sciunzi@mat.unical.it
- Received by editor(s): March 23, 2022
- Received by editor(s) in revised form: September 27, 2022, and September 27, 2022
- Published electronically: February 28, 2023
- Additional Notes: The first author was partially supported by Agencia Estatal de Investigación (Spain), project PID2019-106122GB-I00/AEI/10.3039/501100011033. The second and third authors were partially supported by PRIN project 2017JPCAPN (Italy): Qualitative and quantitative aspects of nonlinear PDEs, and L. Montoro by Agencia Estatal de Investigación (Spain), project PDI2019-110712GB-100.
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 3493-3514
- MSC (2020): Primary 35J47, 35J92, 76A05
- DOI: https://doi.org/10.1090/tran/8867
- MathSciNet review: 4577339