Post-critically finite maps on $\mathbb {P}^n$ for $n\ge 2$ are sparse
HTML articles powered by AMS MathViewer
- by Patrick Ingram, Rohini Ramadas and Joseph H. Silverman;
- Trans. Amer. Math. Soc. 376 (2023), 3087-3109
- DOI: https://doi.org/10.1090/tran/8871
- Published electronically: February 3, 2023
- HTML | PDF | Request permission
Abstract:
Let $f:{\mathbb P}^n\to {\mathbb P}^n$ be a morphism of degree $d\ge 2$. The map $f$ is said to be post-critically finite (PCF) if there exist integers $k\ge 1$ and $\ell \ge 0$ such that the critical locus $\operatorname {Crit}_f$ satisfies $f^{k+\ell }(\operatorname {Crit}_f)\subseteq {f^\ell (\operatorname {Crit}_f)}$. The smallest such $\ell$ is called the tail-length. We prove that for $d\ge 3$ and $n\ge 2$, the set of PCF maps $f$ with tail-length at most $2$ is not Zariski dense in the the parameter space of all such maps. In particular, maps with periodic critical loci, i.e., with $\ell =0$, are not Zariski dense.References
- James Belk and Sarah Koch, Iterated monodromy for a two-dimensional map, In the tradition of Ahlfors-Bers. V, Contemp. Math., vol. 510, Amer. Math. Soc., Providence, RI, 2010, pp. 1–11. MR 2581826, DOI 10.1090/conm/510/10013
- Araceli M. Bonifant and Marius Dabija, Self-maps of ${\Bbb P}^2$ with invariant elliptic curves, Complex manifolds and hyperbolic geometry (Guanajuato, 2001) Contemp. Math., vol. 311, Amer. Math. Soc., Providence, RI, 2002, pp. 1–25. MR 1940161, DOI 10.1090/conm/311/05444
- Andrew Bridy, Patrick Ingram, Rafe Jones, Jamie Juul, Alon Levy, Michelle Manes, Simon Rubinstein-Salzedo, and Joseph H. Silverman, Finite ramification for preimage fields of post-critically finite morphisms, Math. Res. Lett. 24 (2017), no. 6, 1633–1647. MR 3762687, DOI 10.4310/MRL.2017.v24.n6.a3
- C. Ciliberto and F. Flamini, On the branch curve of a general projection of a surface to a plane, Trans. Amer. Math. Soc. 363 (2011), no. 7, 3457–3471. MR 2775814, DOI 10.1090/S0002-9947-2011-05401-2
- Marius Dabija and Mattias Jonsson, Algebraic webs invariant under endomorphisms, Publ. Mat. 54 (2010), no. 1, 137–148. MR 2603592, DOI 10.5565/PUBLMAT_{5}4110_{0}7
- Laura De Marco, Dynamical moduli spaces and elliptic curves, Ann. Fac. Sci. Toulouse Math. (6) 27 (2018), no. 2, 389–420 (English, with English and French summaries). MR 3831028, DOI 10.5802/afst.1573
- Adrien Douady and John H. Hubbard, A proof of Thurston’s topological characterization of rational functions, Acta Math. 171 (1993), no. 2, 263–297. MR 1251582, DOI 10.1007/BF02392534
- John Erik Fornæss and Nessim Sibony, Critically finite rational maps on $\textbf {P}^2$, The Madison Symposium on Complex Analysis (Madison, WI, 1991) Contemp. Math., vol. 137, Amer. Math. Soc., Providence, RI, 1992, pp. 245–260. MR 1190986, DOI 10.1090/conm/137/1190986
- Yoshio Fujimoto and Noboru Nakayama, Complex projective manifolds which admit non-isomorphic surjective endomorphisms, Higher dimensional algebraic varieties and vector bundles, RIMS Kôkyûroku Bessatsu, B9, Res. Inst. Math. Sci. (RIMS), Kyoto, 2008, pp. 51–79. MR 2509692
- Christopher D. Hacon, James McKernan, and Chenyang Xu, On the birational automorphisms of varieties of general type, Ann. of Math. (2) 177 (2013), no. 3, 1077–1111. MR 3034294, DOI 10.4007/annals.2013.177.3.6
- Robin Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York-Heidelberg, 1977. MR 463157, DOI 10.1007/978-1-4757-3849-0
- Shigeru Iitaka, Algebraic geometry, North-Holland Mathematical Library, vol. 24, Springer-Verlag, New York-Berlin, 1982. An introduction to birational geometry of algebraic varieties; Graduate Texts in Mathematics, 76. MR 637060, DOI 10.1007/978-1-4613-8119-8
- Patrick Ingram, Rigidity and height bounds for certain post-critically finite endomorphisms of $\Bbb {P}^N$, Canad. J. Math. 68 (2016), no. 3, 625–654. MR 3492630, DOI 10.4153/CJM-2015-045-x
- Mattias Jonsson, Some properties of $2$-critically finite holomorphic maps of $\textbf {P}^2$, Ergodic Theory Dynam. Systems 18 (1998), no. 1, 171–187. MR 1609475, DOI 10.1017/S0143385798097521
- Sarah Koch, Teichmüller theory and critically finite endomorphisms, Adv. Math. 248 (2013), 573–617. MR 3107522, DOI 10.1016/j.aim.2013.08.019
- V. S. Kulikov and Vik. S. Kulikov, Generic coverings of the plane with $A$-$D$-$E$-singularities, Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), no. 6, 65–106 (Russian, with Russian summary); English transl., Izv. Math. 64 (2000), no. 6, 1153–1195. MR 1817250, DOI 10.1070/IM2000v064n06ABEH000312
- Alon Levy, The space of morphisms on projective space, Acta Arith. 146 (2011), no. 1, 13–31. MR 2741188, DOI 10.4064/aa146-1-2
- Volodymyr Nekrashevych, Combinatorial models of expanding dynamical systems, Ergodic Theory Dynam. Systems 34 (2014), no. 3, 938–985. MR 3199801, DOI 10.1017/etds.2012.163
- D. G. Northcott, Periodic points on an algebraic variety, Ann. of Math. (2) 51 (1950), 167–177. MR 34607, DOI 10.2307/1969504
- Clayton Petsche, Lucien Szpiro, and Michael Tepper, Isotriviality is equivalent to potential good reduction for endomorphisms of $\Bbb P^N$ over function fields, J. Algebra 322 (2009), no. 9, 3345–3365. MR 2567424, DOI 10.1016/j.jalgebra.2008.11.027
- Feng Rong, The Fatou set for critically finite maps, Proc. Amer. Math. Soc. 136 (2008), no. 10, 3621–3625. MR 2415046, DOI 10.1090/S0002-9939-08-09358-1
- Joseph H. Silverman, The arithmetic of dynamical systems, Graduate Texts in Mathematics, vol. 241, Springer, New York, 2007. MR 2316407, DOI 10.1007/978-0-387-69904-2
- Joseph H. Silverman, Moduli spaces and arithmetic dynamics, CRM Monograph Series, vol. 30, American Mathematical Society, Providence, RI, 2012. MR 2884382, DOI 10.1090/crmm/030
- J. Starr, The Kodaira dimension of spaces of rational curves on low degree hypersurfaces, 2003. arxiv.org/abs/math/0305432.
- Tetsuo Ueda, Critically finite maps on projective spaces, Sūrikaisekikenkyūsho K\B{o}kyūroku 1087 (1999), 132–138 (Japanese). Research on complex dynamical systems: current state and prospects (Japanese) (Kyoto, 1998). MR 1747345
- Israel Vainsencher, Complete collineations and blowing up determinantal ideals, Math. Ann. 267 (1984), no. 3, 417–432. MR 738261, DOI 10.1007/BF01456098
- T. Gauthier, B. Hutz, and S. Kaschner, Symmetrization of rational maps: arithmetic properties and families of Lattés maps of $\mathbb {P}^{k}$, arxiv.org/abs/math/1603.04887.
- Tien-Cuong Dinh and Nessim Sibony, Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings, Holomorphic dynamical systems, Lecture Notes in Math., vol. 1998, Springer, Berlin, 2010, pp. 165–294. MR 2648690, DOI 10.1007/978-3-642-13171-4_{4}
- Najmuddin Fakhruddin, The algebraic dynamics of generic endomorphisms of $\Bbb {P}^n$, Algebra Number Theory 8 (2014), no. 3, 587–608. MR 3218803, DOI 10.2140/ant.2014.8.587
Bibliographic Information
- Patrick Ingram
- Affiliation: Department of Mathematics and Statistics, York University, N520 Ross, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
- MR Author ID: 759982
- Email: pingram@yorku.ca
- Rohini Ramadas
- Affiliation: Warwick Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
- MR Author ID: 1242284
- ORCID: 0000-0001-5974-7115
- Email: rohini.ramadas@warwick.ac.uk
- Joseph H. Silverman
- Affiliation: Mathematics Department, Box 1917, Brown University, Providence, Rhode Island 02912 (ORCID: 0000-0003-3887-3248)
- MR Author ID: 162205
- ORCID: 0000-0003-3887-3248
- Email: joseph_silverman@brown.edu
- Received by editor(s): November 18, 2019
- Received by editor(s) in revised form: March 17, 2022
- Published electronically: February 3, 2023
- Additional Notes: The first author’s work was partially supported by Simons Collaboration Grant #283120. The second author’s work was partially supported by NSF fellowship DMS-1703308. The third author’s work was partially supported by Simons Collaboration Grant #241309 and NSF EAGER DMS-1349908.
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 3087-3109
- MSC (2020): Primary 37P05; Secondary 37F10, 37P45
- DOI: https://doi.org/10.1090/tran/8871
- MathSciNet review: 4577329