A genus two arithmetic Siegel-Weil formula on $X_0(N)$
HTML articles powered by AMS MathViewer
- by Siddarth Sankaran, Yousheng Shi and Tonghai Yang;
- Trans. Amer. Math. Soc. 376 (2023), 3995-4041
- DOI: https://doi.org/10.1090/tran/8843
- Published electronically: March 21, 2023
- HTML | PDF | Request permission
Abstract:
We define a family of arithmetic zero cycles in the arithmetic Chow group of a modular curve $X_0(N)$, for $N>3$ odd and squarefree, and identify the arithmetic degrees of these cycles as $q$-coefficients of the central derivative of a Siegel Eisenstein series of genus two. This parallels work of Kudla-Rapoport-Yang for Shimura curves.References
- J. I. Burgos Gil, J. Kramer, and U. Kühn, Cohomological arithmetic Chow rings, J. Inst. Math. Jussieu 6 (2007), no. 1, 1–172. MR 2285241, DOI 10.1017/S1474748007000011
- Jan Hendrik Bruinier and Tonghai Yang, Faltings heights of CM cycles and derivatives of $L$-functions, Invent. Math. 177 (2009), no. 3, 631–681. MR 2534103, DOI 10.1007/s00222-009-0192-8
- Tuoping Du and Tonghai Yang, Arithmetic Siegel-Weil formula on $X_0(N)$, Adv. Math. 345 (2019), 702–755. MR 3901671, DOI 10.1016/j.aim.2019.01.015
- Benedict H. Gross and Kevin Keating, On the intersection of modular correspondences, Invent. Math. 112 (1993), no. 2, 225–245. MR 1213101, DOI 10.1007/BF01232433
- Wee Teck Gan, Yannan Qiu, and Shuichiro Takeda, The regularized Siegel-Weil formula (the second term identity) and the Rallis inner product formula, Invent. Math. 198 (2014), no. 3, 739–831. MR 3279536, DOI 10.1007/s00222-014-0509-0
- Luis E. Garcia and Siddarth Sankaran, Green forms and the arithmetic Siegel-Weil formula, Invent. Math. 215 (2019), no. 3, 863–975. MR 3935034, DOI 10.1007/s00222-018-0839-4
- Benjamin Howard, Arithmetic volumes of unitary Shimura curves, E-prints, arXiv:2010.07362, October 2020.
- Yoshiyuki Kitaoka, A note on local densities of quadratic forms, Nagoya Math. J. 92 (1983), 145–152. MR 726146, DOI 10.1017/S0027763000020626
- Nicholas M. Katz and Barry Mazur, Arithmetic moduli of elliptic curves, Annals of Mathematics Studies, vol. 108, Princeton University Press, Princeton, NJ, 1985. MR 772569, DOI 10.1515/9781400881710
- Stephen S. Kudla and Stephen Rallis, On the Weil-Siegel formula, J. Reine Angew. Math. 387 (1988), 1–68. MR 946349, DOI 10.1515/crll.1988.391.65
- Stephen S. Kudla and Stephen Rallis, A regularized Siegel-Weil formula: the first term identity, Ann. of Math. (2) 140 (1994), no. 1, 1–80. MR 1289491, DOI 10.2307/2118540
- Stephen S. Kudla, Michael Rapoport, and Tonghai Yang, Derivatives of Eisenstein series and Faltings heights, Compos. Math. 140 (2004), no. 4, 887–951. MR 2059224, DOI 10.1112/S0010437X03000459
- Stephen S. Kudla, Michael Rapoport, and Tonghai Yang, Modular forms and special cycles on Shimura curves, Annals of Mathematics Studies, vol. 161, Princeton University Press, Princeton, NJ, 2006. MR 2220359, DOI 10.1515/9781400837168
- Stephen S. Kudla, Central derivatives of Eisenstein series and height pairings, Ann. of Math. (2) 146 (1997), no. 3, 545–646. MR 1491448, DOI 10.2307/2952456
- Ulf Kühn, Generalized arithmetic intersection numbers, J. Reine Angew. Math. 534 (2001), 209–236. MR 1831639, DOI 10.1515/crll.2001.043
- T. Y. Lam, Introduction to quadratic forms over fields, Graduate Studies in Mathematics, vol. 67, American Mathematical Society, Providence, RI, 2005. MR 2104929, DOI 10.1090/gsm/067
- K. A. Ribet, On modular representations of $\textrm {Gal}(\overline \textbf {Q}/\textbf {Q})$ arising from modular forms, Invent. Math. 100 (1990), no. 2, 431–476. MR 1047143, DOI 10.1007/BF01231195
- R. Ranga Rao, On some explicit formulas in the theory of Weil representation, Pacific J. Math. 157 (1993), no. 2, 335–371. MR 1197062, DOI 10.2140/pjm.1993.157.335
- Carl Ludwig Siegel, Advanced analytic number theory, 2nd ed., Tata Institute of Fundamental Research Studies in Mathematics, vol. 9, Tata Institute of Fundamental Research, Bombay, 1980. MR 659851
- C. Soulé, Lectures on Arakelov geometry, Cambridge Studies in Advanced Mathematics, vol. 33, Cambridge University Press, Cambridge, 1992. With the collaboration of D. Abramovich, J.-F. Burnol and J. Kramer. MR 1208731, DOI 10.1017/CBO9780511623950
- Tonghai Yang, An explicit formula for local densities of quadratic forms, J. Number Theory 72 (1998), no. 2, 309–356. MR 1651696, DOI 10.1006/jnth.1998.2258
- Tonghai Yang, Local densities of 2-adic quadratic forms, J. Number Theory 108 (2004), no. 2, 287–345. MR 2098640, DOI 10.1016/j.jnt.2004.05.002
Bibliographic Information
- Siddarth Sankaran
- Affiliation: Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, Canada
- MR Author ID: 1045611
- Email: siddarth.sankaran@umanitoba.ca
- Yousheng Shi
- Affiliation: Department of Mathematics, University of Wisconsin, Madison, Wisconsin
- ORCID: 0000-0003-4230-9244
- Email: shi58@wisc.edu
- Tonghai Yang
- Affiliation: Department of Mathematics, University of Wisconsin, Madison, Wisconsin
- MR Author ID: 606823
- Email: thyang@math.wisc.edu
- Received by editor(s): June 1, 2022
- Received by editor(s) in revised form: October 7, 2022
- Published electronically: March 21, 2023
- Additional Notes: The first author was partially supported by an NSERC Discovery grant. The third author was partially supported by Van Vleck Research grant and Dorothy Gollmar chair fund.
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 3995-4041
- MSC (2020): Primary 11G18, 11F46, 14G40, 14G35
- DOI: https://doi.org/10.1090/tran/8843
- MathSciNet review: 4586804