Simple sharply 2-transitive groups
HTML articles powered by AMS MathViewer
- by Simon André and Katrin Tent;
- Trans. Amer. Math. Soc. 376 (2023), 3965-3993
- DOI: https://doi.org/10.1090/tran/8846
- Published electronically: February 16, 2023
- HTML | PDF | Request permission
Abstract:
We construct infinite simple sharply 2-transitive groups. Our result answers an open question of Peter Neumann. In fact, we prove that every sharply 2-transitive group $G$ of characteristic 0 embeds into a simple sharply 2-transitive group.References
- T. Altinel, A. Berkman, and F. O. Wagner, Sharply 2-transitive groups of finite Morley rank, 2018.
- Alexandre Borovik and Ali Nesin, Groups of finite Morley rank, Oxford Logic Guides, vol. 26, The Clarendon Press, Oxford University Press, New York, 1994. Oxford Science Publications. MR 1321141
- Oleg Bogopolski, Introduction to group theory, EMS Textbooks in Mathematics, European Mathematical Society (EMS), Zürich, 2008. Translated, revised and expanded from the 2002 Russian original. MR 2396717, DOI 10.4171/041
- Peter J. Cameron, Permutation groups, London Mathematical Society Student Texts, vol. 45, Cambridge University Press, Cambridge, 1999. MR 1721031, DOI 10.1017/CBO9780511623677
- T. Clausen and K. Tent, On the geometry of sharply 2-transitive groups, 2020.
- T. Clausen and K. Tent, Mock hyperbolic reflection spaces and Frobenius groups of finite Morley rank, 2021.
- Yair Glasner and Dennis D. Gulko, Sharply 2-transitive linear groups, Int. Math. Res. Not. IMRN 10 (2014), 2691–2701. MR 3214281, DOI 10.1093/imrn/rnt014
- Yair Glasner and Dennis D. Gulko, Non-split linear sharply 2-transitive groups, Proc. Amer. Math. Soc. 149 (2021), no. 6, 2305–2317. MR 4246784, DOI 10.1090/proc/15360
- George Glauberman, Avinoam Mann, and Yoav Segev, A note on groups generated by involutions and sharply 2-transitive groups, Proc. Amer. Math. Soc. 143 (2015), no. 5, 1925–1932. MR 3314102, DOI 10.1090/S0002-9939-2014-12405-1
- Marshall Hall Jr., On a theorem of Jordan, Pacific J. Math. 4 (1954), 219–226. MR 61108, DOI 10.2140/pjm.1954.4.219
- C. Jordan, Recherches sur les substitutions, J. Math. Pures Appl. (1872), 351–363.
- William Kerby, On infinite sharply multiply transitive groups, Hamburger Mathematische Einzelschriften (N.F.), Heft 6, Vandenhoeck & Ruprecht, Göttingen, 1974. MR 384938
- V. D. Mazurov and E. I. Khukhro (eds.), The Kourovka notebook, Eighteenth edition, Russian Academy of Sciences Siberian Division, Institute of Mathematics, Novosibirsk, 2014. Unsolved problems in group theory. MR 3408705
- Eliyahu Rips, Yoav Segev, and Katrin Tent, A sharply 2-transitive group without a non-trivial abelian normal subgroup, J. Eur. Math. Soc. (JEMS) 19 (2017), no. 10, 2895–2910. MR 3712996, DOI 10.4171/JEMS/730
- Eliyahu Rips and Katrin Tent, Sharply 2-transitive groups of characteristic 0, J. Reine Angew. Math. 750 (2019), 227–238. MR 3943322, DOI 10.1515/crelle-2016-0054
- Jean-Pierre Serre, Arbres, amalgames, $\textrm {SL}_{2}$, Astérisque, No. 46, Société Mathématique de France, Paris, 1977 (French). Avec un sommaire anglais; Rédigé avec la collaboration de Hyman Bass. MR 476875
- Katrin Tent, Infinite sharply multiply transitive groups, Jahresber. Dtsch. Math.-Ver. 118 (2016), no. 2, 75–85. MR 3499653, DOI 10.1365/s13291-016-0135-4
- Katrin Tent, Sharply 3-transitive groups, Adv. Math. 286 (2016), 722–728. MR 3415695, DOI 10.1016/j.aim.2015.09.018
- J. Tits, Généralisations des groupes projectifs basées sur leurs propriétés de transitivité, Mémoires de la Classe des Sciences, 27, 1952.
- J. Tits, Sur les groupes doublement transitifs continus, Comment. Math. Helv. 26 (1952), 203–224 (French). MR 51238, DOI 10.1007/BF02564302
- Seyfi Türkelli, Splitting of sharply 2-transitive groups of characteristic 3, Turkish J. Math. 28 (2004), no. 3, 295–298. MR 2095832
- Katrin Tent and Martin Ziegler, Sharply 2-transitive groups, Adv. Geom. 16 (2016), no. 1, 131–134. MR 3451269, DOI 10.1515/advgeom-2015-0047
- Mitsuo Yoshizawa, On infinite four-transitive permutation groups, J. London Math. Soc. (2) 19 (1979), no. 3, 437–438. MR 540057, DOI 10.1112/jlms/s2-19.3.437
- Hans Zassenhaus, Kennzeichnung endlicher linearer Gruppen als Permutationsgruppen, Abh. Math. Sem. Univ. Hamburg 11 (1935), no. 1, 17–40 (German). MR 3069641, DOI 10.1007/BF02940711
- Hans Zassenhaus, Über endliche Fastkörper, Abh. Math. Sem. Univ. Hamburg 11 (1935), no. 1, 187–220 (German). MR 3069653, DOI 10.1007/BF02940723
Bibliographic Information
- Simon André
- Affiliation: Institut für Mathematische Logik und Grundlagenforschung, Westfalische Wilhelms-Universität Münster, Einsteinstraße 62, 48149 Münster, Germany
- Email: sandre@uni-muenster.de
- Katrin Tent
- Affiliation: Institut für Mathematische Logik und Grundlagenforschung, Westfalische Wilhelms-Universität Münster, Einsteinstraße 62, 48149 Münster, Germany
- MR Author ID: 602547
- Email: tent@wwu.de
- Received by editor(s): November 29, 2021
- Received by editor(s) in revised form: September 23, 2022
- Published electronically: February 16, 2023
- Additional Notes: This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy EXC 2044–390685587, Mathematics Münster: Dynamics–Geometry–Structure and by CRC 1442 Geometry: Deformations and Rigidity.
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 3965-3993
- MSC (2020): Primary 20B22, 20E32, 20E06
- DOI: https://doi.org/10.1090/tran/8846
- MathSciNet review: 4586803