Margulis multiverse: Infinitesimal rigidity, pressure form and convexity
HTML articles powered by AMS MathViewer
- by Sourav Ghosh;
- Trans. Amer. Math. Soc. 376 (2023), 4239-4272
- DOI: https://doi.org/10.1090/tran/8864
- Published electronically: February 28, 2023
- HTML | PDF | Request permission
Abstract:
In this article we construct the pressure forms on the moduli spaces of higher dimensional Margulis spacetimes without cusps and study their properties. We show that the Margulis spacetimes are infinitesimally determined by their marked Margulis invariant spectra. We use this fact to show that the restrictions of the pressure form give Riemannian metrics on the constant entropy sections of the quotient moduli space. We also show that constant entropy sections of the moduli space with fixed linear parts bound convex domains.References
- L. M. Abramov, On the entropy of a flow, Dokl. Akad. Nauk SSSR 128 (1959), 873–875 (Russian). MR 113985
- H. Abels, G. A. Margulis, and G. A. Soĭfer, Semigroups containing proximal linear maps, Israel J. Math. 91 (1995), no. 1-3, 1–30. MR 1348303, DOI 10.1007/BF02761637
- H. Abels, G. A. Margulis, and G. A. Soifer, On the Zariski closure of the linear part of a properly discontinuous group of affine transformations, J. Differential Geom. 60 (2002), no. 2, 315–344. MR 1938115, DOI 10.4310/jdg/1090351104
- Herbert Abels, Gregory Margulis, and Gregory Soifer, The Auslander conjecture for dimension less than 7, Preprint, arXiv:1211.2525, 2012.
- Louis Auslander, The structure of complete locally affine manifolds, Topology 3 (1964), no. suppl, suppl. 1, 131–139. MR 161255, DOI 10.1016/0040-9383(64)90012-6
- Louis Auslander, An account of the theory of crystallographic groups, Proc. Amer. Math. Soc. 16 (1965), 1230–1236. MR 185012, DOI 10.1090/S0002-9939-1965-0185012-7
- Martin Bridgeman, Richard Canary, François Labourie, and Andres Sambarino, The pressure metric for Anosov representations, Geom. Funct. Anal. 25 (2015), no. 4, 1089–1179. MR 3385630, DOI 10.1007/s00039-015-0333-8
- Ludwig Bieberbach, Über die Bewegungsgruppen der Euklidischen Räume, Math. Ann. 70 (1911), no. 3, 297–336 (German). MR 1511623, DOI 10.1007/BF01564500
- Ludwig Bieberbach, Über die Bewegungsgruppen der Euklidischen Räume (Zweite Abhandlung.) Die Gruppen mit einem endlichen Fundamentalbereich, Math. Ann. 72 (1912), no. 3, 400–412 (German). MR 1511704, DOI 10.1007/BF01456724
- Francis Bonahon, The geometry of Teichmüller space via geodesic currents, Invent. Math. 92 (1988), no. 1, 139–162. MR 931208, DOI 10.1007/BF01393996
- Rufus Bowen, Periodic orbits for hyperbolic flows, Amer. J. Math. 94 (1972), 1–30. MR 298700, DOI 10.2307/2373590
- Jairo Bochi, Rafael Potrie, and Andrés Sambarino, Anosov representations and dominated splittings, J. Eur. Math. Soc. (JEMS) 21 (2019), no. 11, 3343–3414. MR 4012341, DOI 10.4171/JEMS/905
- Rufus Bowen and David Ruelle, The ergodic theory of Axiom A flows, Invent. Math. 29 (1975), no. 3, 181–202. MR 380889, DOI 10.1007/BF01389848
- Rufus Bowen and Caroline Series, Markov maps associated with Fuchsian groups, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 153–170. MR 556585, DOI 10.1007/BF02684772
- Martin J. Bridgeman and Edward C. Taylor, An extension of the Weil-Petersson metric to quasi-Fuchsian space, Math. Ann. 341 (2008), no. 4, 927–943. MR 2407332, DOI 10.1007/s00208-008-0218-3
- Marc Burger, Intersection, the Manhattan curve, and Patterson-Sullivan theory in rank $2$, Internat. Math. Res. Notices 7 (1993), 217–225. MR 1230298, DOI 10.1155/S1073792893000236
- Peter Buser, A geometric proof of Bieberbach’s theorems on crystallographic groups, Enseign. Math. (2) 31 (1985), no. 1-2, 137–145. MR 798909
- Virginie Charette and Todd Drumm, Strong marked isospectrality of affine Lorentzian groups, J. Differential Geom. 66 (2004), no. 3, 437–452. MR 2106472
- Virginie Charette, Todd A. Drumm, and William M. Goldman, Proper affine deformation spaces of two-generator Fuchsian groups, Preprint, arXiv:1501.04535, 2015.
- Christophe Champetier, Petite simplification dans les groupes hyperboliques, Ann. Fac. Sci. Toulouse Math. (6) 3 (1994), no. 2, 161–221 (French, with English and French summaries). MR 1283206, DOI 10.5802/afst.778
- Todd A. Drumm and William M. Goldman, Isospectrality of flat Lorentz 3-manifolds, J. Differential Geom. 58 (2001), no. 3, 457–465. MR 1906782
- Jeffrey Danciger, François Guéritaud, and Fanny Kassel, Margulis spacetimes via the arc complex, Invent. Math. 204 (2016), no. 1, 133–193. MR 3480555, DOI 10.1007/s00222-015-0610-z
- Jeffrey Danciger, François Guéritaud, and Fanny Kassel, Proper affine actions for right-angled Coxeter groups, Duke Math. J. 169 (2020), no. 12, 2231–2280. MR 4139042, DOI 10.1215/00127094-2019-0084
- Todd A. Drumm, Fundamental polyhedra for Margulis space-times, Topology 31 (1992), no. 4, 677–683. MR 1191372, DOI 10.1016/0040-9383(92)90001-X
- Todd A. Drumm, Linear holonomy of Margulis space-times, J. Differential Geom. 38 (1993), no. 3, 679–690. MR 1243791
- David Fried and William M. Goldman, Three-dimensional affine crystallographic groups, Adv. in Math. 47 (1983), no. 1, 1–49. MR 689763, DOI 10.1016/0001-8708(83)90053-1
- Herrn Frobenius, Ueber lineare Substitutionen und bilineare Formen, J. Reine Angew. Math. 84 (1878), 1–63. MR 1581640, DOI 10.1515/crelle-1878-18788403
- G. Frobenius, Über die Unzerlegbaren Diskreten Bewegungsgruppen, Preussische Akademie der Wissenschaften Berlin: Sitzungsberichte der Preußischen Akademie der Wissenschaften zu Berlin, Reichsdr., 1911.
- Sourav Ghosh, The pressure metric on the Margulis multiverse, Geom. Dedicata 193 (2018), 1–30. MR 3770278, DOI 10.1007/s10711-017-0260-y
- William M. Goldman, François Labourie, and Gregory Margulis, Proper affine actions and geodesic flows of hyperbolic surfaces, Ann. of Math. (2) 170 (2009), no. 3, 1051–1083. MR 2600870, DOI 10.4007/annals.2009.170.1051
- M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75–263. MR 919829, DOI 10.1007/978-1-4613-9586-7_{3}
- Sourav Ghosh and Nicolaus Treib, Affine Anosov representations and proper actions, Preprint, arXiv:1711.09712, 2017.
- Olivier Guichard and Anna Wienhard, Topological invariants of Anosov representations, J. Topol. 3 (2010), no. 3, 578–642. MR 2684514, DOI 10.1112/jtopol/jtq018
- Olivier Guichard and Anna Wienhard, Anosov representations: domains of discontinuity and applications, Invent. Math. 190 (2012), no. 2, 357–438. MR 2981818, DOI 10.1007/s00222-012-0382-7
- Roger A. Horn and Charles R. Johnson, Matrix analysis, 2nd ed., Cambridge University Press, Cambridge, 2013. MR 2978290
- Dennis Johnson and John J. Millson, Deformation spaces associated to compact hyperbolic manifolds, Discrete groups in geometry and analysis (New Haven, Conn., 1984) Progr. Math., vol. 67, Birkhäuser Boston, Boston, MA, 1987, pp. 48–106. MR 900823, DOI 10.1007/978-1-4899-6664-3_{3}
- Inkang Kim, Affine action and Margulis invariant, J. Funct. Anal. 219 (2005), no. 1, 205–225. MR 2108366, DOI 10.1016/j.jfa.2004.04.011
- A. Katok, G. Knieper, M. Pollicott, and H. Weiss, Differentiability and analyticity of topological entropy for Anosov and geodesic flows, Invent. Math. 98 (1989), no. 3, 581–597. MR 1022308, DOI 10.1007/BF01393838
- Michael Kapovich, Bernhard Leeb, and Joan Porti, Morse actions of discrete groups on symmetric space, Preprint, arXiv:1403.7671, 2014.
- Michael Kapovich, Bernhard Leeb, and Joan Porti, Anosov subgroups: dynamical and geometric characterizations, Eur. J. Math. 3 (2017), no. 4, 808–898. MR 3736790, DOI 10.1007/s40879-017-0192-y
- Michael Kapovich, Bernhard Leeb, and Joan Porti, Dynamics on flag manifolds: domains of proper discontinuity and cocompactness, Geom. Topol. 22 (2018), no. 1, 157–234. MR 3720343, DOI 10.2140/gt.2018.22.157
- Gerhard Knieper, Volume growth, entropy and the geodesic stretch, Math. Res. Lett. 2 (1995), no. 1, 39–58. MR 1312976, DOI 10.4310/MRL.1995.v2.n1.a5
- François Labourie, Fuchsian affine actions of surface groups, J. Differential Geom. 59 (2001), no. 1, 15–31. MR 1909247
- François Labourie, Anosov flows, surface groups and curves in projective space, Invent. Math. 165 (2006), no. 1, 51–114. MR 2221137, DOI 10.1007/s00222-005-0487-3
- A. N. Livšic, Cohomology of dynamical systems, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 1296–1320 (Russian). MR 334287
- Alexander Lubotzky and Andy R. Magid, Varieties of representations of finitely generated groups, Mem. Amer. Math. Soc. 58 (1985), no. 336, xi+117. MR 818915, DOI 10.1090/memo/0336
- G. A. Margulis, Free completely discontinuous groups of affine transformations, Dokl. Akad. Nauk SSSR 272 (1983), no. 4, 785–788 (Russian). MR 722330
- G. A. Margulis, Complete affine locally flat manifolds with a free fundamental group, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 134 (1984), 190–205 (Russian, with English summary). Automorphic functions and number theory, II. MR 741860
- Curtis T. McMullen, Thermodynamics, dimension and the Weil-Petersson metric, Invent. Math. 173 (2008), no. 2, 365–425. MR 2415311, DOI 10.1007/s00222-008-0121-2
- John Milnor, On fundamental groups of complete affinely flat manifolds, Advances in Math. 25 (1977), no. 2, 178–187. MR 454886, DOI 10.1016/0001-8708(77)90004-4
- Igor Mineyev, Flows and joins of metric spaces, Geom. Topol. 9 (2005), 403–482. MR 2140987, DOI 10.2140/gt.2005.9.403
- Barrett O’Neill, Semi-Riemannian geometry, Pure and Applied Mathematics, vol. 103, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. With applications to relativity. MR 719023
- Mark Pollicott, Symbolic dynamics for Smale flows, Amer. J. Math. 109 (1987), no. 1, 183–200. MR 878205, DOI 10.2307/2374558
- William Parry and Mark Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque 187-188 (1990), 268 (English, with French summary). MR 1085356
- Jean-François Quint, Divergence exponentielle des sous-groupes discrets en rang supérieur, Comment. Math. Helv. 77 (2002), no. 3, 563–608 (French, with French summary). MR 1933790, DOI 10.1007/s00014-002-8352-0
- M. S. Raghunathan, Discrete subgroups of Lie groups, Math. Student Special Centenary Volume (2007), 59–70 (2008). MR 2527560
- David Ruelle, Thermodynamic formalism, 2nd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2004. The mathematical structures of equilibrium statistical mechanics. MR 2129258, DOI 10.1017/CBO9780511617546
- A. Sambarino, Hyperconvex representations and exponential growth, Ergodic Theory Dynam. Systems 34 (2014), no. 3, 986–1010. MR 3199802, DOI 10.1017/etds.2012.170
- Andrés Sambarino, Quantitative properties of convex representations, Comment. Math. Helv. 89 (2014), no. 2, 443–488. MR 3229035, DOI 10.4171/CMH/324
- Ilia Smilga, Proper affine actions on semisimple Lie algebras, Ann. Inst. Fourier (Grenoble) 66 (2016), no. 2, 785–831 (English, with English and French summaries). MR 3477891, DOI 10.5802/aif.3026
- Ilia Smilga, Proper affine actions in non-swinging representations, Groups Geom. Dyn. 12 (2018), no. 2, 449–528. MR 3813201, DOI 10.4171/GGD/447
- Peter Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York-Berlin, 1982. MR 648108, DOI 10.1007/978-1-4612-5775-2
Bibliographic Information
- Sourav Ghosh
- Affiliation: Department of Mathematics, Luxembourg and Ashoka University, India
- MR Author ID: 1220767
- ORCID: 0000-0003-0056-9371
- Email: sourav.ghosh@ashoka.edu.in, sourav.ghosh.bagui@gmail.com
- Received by editor(s): July 20, 2020
- Received by editor(s) in revised form: June 16, 2021, June 30, 2022, and November 14, 2022
- Published electronically: February 28, 2023
- Additional Notes: The author was supported by the AGoLoM FNR grant OPEN/16/11405402 at University of Luxembourg and Ashoka University annual research grant.
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 4239-4272
- MSC (2020): Primary 37D35, 22E40; Secondary 58D29
- DOI: https://doi.org/10.1090/tran/8864
- MathSciNet review: 4586810