The $\Sigma$-invariants of $S$-arithmetic subgroups of Borel groups
HTML articles powered by AMS MathViewer
- by Eduard Schesler;
- Trans. Amer. Math. Soc. 376 (2023), 4173-4237
- DOI: https://doi.org/10.1090/tran/8866
- Published electronically: January 27, 2023
- HTML | PDF | Request permission
Abstract:
Given a Chevalley group $\mathcal {G}$ of classical type and a Borel subgroup $\mathcal {B} \subseteq \mathcal {G}$, we compute the $\Sigma$-invariants of the $S$-arithmetic groups $\mathcal {B}(\mathbb {Z}[1/N])$, where $N$ is a product of large enough primes. To this end, we let $\mathcal {B}(\mathbb {Z}[1/N])$ act on a Euclidean building $X$ that is given by the product of Bruhat–Tits buildings $X_p$ associated to $\mathcal {G}$, where $p$ is a prime dividing $N$. In the course of the proof we introduce necessary and sufficient conditions for convex functions on $CAT(0)$-spaces to be continuous. We apply these conditions to associate to each simplex at infinity $\tau \subset \partial _\infty X$ its so-called parabolic building $X^{\tau }$ and to study it from a geometric point of view. Moreover, we introduce new techniques in combinatorial Morse theory, which enable us to take advantage of the concept of essential $n$-connectivity rather than actual $n$-connectivity. Most of our building theoretic results are proven in the general framework of spherical and Euclidean buildings. For example, we prove that the complex opposite each chamber in a spherical building $\Delta$ contains an apartment, provided $\Delta$ is thick enough and $Aut(\Delta )$ acts chamber transitively on $\Delta$.References
- Herbert Abels and Kenneth S. Brown, Finiteness properties of solvable $S$-arithmetic groups: an example, Proceedings of the Northwestern conference on cohomology of groups (Evanston, Ill., 1985), 1987, pp. 77–83. MR 885096, DOI 10.1016/0022-4049(87)90016-8
- Peter Abramenko and Kenneth S. Brown, Buildings, Graduate Texts in Mathematics, vol. 248, Springer, New York, 2008. Theory and applications. MR 2439729, DOI 10.1007/978-0-387-78835-7
- Herbert Abels, An example of a finitely presented solvable group, Homological group theory (Proc. Sympos., Durham, 1977) London Math. Soc. Lecture Note Ser., vol. 36, Cambridge Univ. Press, Cambridge-New York, 1979, pp. 205–211. MR 564423
- Peter Abramenko, Twin buildings and applications to S-arithmetic groups, Lecture Notes in Mathematics, vol. 1641, Springer-Verlag, Berlin, 1996. MR 1624276, DOI 10.1007/BFb0094079
- Juan M. Alonso, Finiteness conditions on groups and quasi-isometries, J. Pure Appl. Algebra 95 (1994), no. 2, 121–129. MR 1293049, DOI 10.1016/0022-4049(94)90069-8
- Mladen Bestvina and Noel Brady, Morse theory and finiteness properties of groups, Invent. Math. 129 (1997), no. 3, 445–470. MR 1465330, DOI 10.1007/s002220050168
- Kai-Uwe Bux and Carlos Gonzalez, The Bestvina-Brady construction revisited: geometric computation of $\Sigma$-invariants for right-angled Artin groups, J. London Math. Soc. (2) 60 (1999), no. 3, 793–801. MR 1753814, DOI 10.1112/S0024610799007991
- Robert Bieri and Ross Geoghegan, Connectivity properties of group actions on non-positively curved spaces, Mem. Amer. Math. Soc. 161 (2003), no. 765, xiv+83. MR 1950396, DOI 10.1090/memo/0765
- Robert Bieri, Ross Geoghegan, and Dessislava H. Kochloukova, The sigma invariants of Thompson’s group $F$, Groups Geom. Dyn. 4 (2010), no. 2, 263–273. MR 2595092, DOI 10.4171/GGD/83
- Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999. MR 1744486, DOI 10.1007/978-3-662-12494-9
- Robert Bieri, A connection between the integral homology and the centre of a rational linear group, Math. Z. 170 (1980), no. 3, 263–266. MR 564205, DOI 10.1007/BF01214865
- Kai-Uwe Bux, Ralf Köhl, and Stefan Witzel, Higher finiteness properties of reductive arithmetic groups in positive characteristic: the rank theorem, Ann. of Math. (2) 177 (2013), no. 1, 311–366. MR 2999042, DOI 10.4007/annals.2013.177.1.6
- Oren Becker, Alexander Lubotzky, and Andreas Thom, Stability and invariant random subgroups, Duke Math. J. 168 (2019), no. 12, 2207–2234. MR 3999445, DOI 10.1215/00127094-2019-0024
- Robert Bieri, Walter D. Neumann, and Ralph Strebel, A geometric invariant of discrete groups, Invent. Math. 90 (1987), no. 3, 451–477. MR 914846, DOI 10.1007/BF01389175
- Robert Bieri and Burkhardt Renz, Valuations on free resolutions and higher geometric invariants of groups, Comment. Math. Helv. 63 (1988), no. 3, 464–497. MR 960770, DOI 10.1007/BF02566775
- Kenneth S. Brown, Trees, valuations, and the Bieri-Neumann-Strebel invariant, Invent. Math. 90 (1987), no. 3, 479–504. MR 914847, DOI 10.1007/BF01389176
- Robert Bieri and Ralph Strebel, Valuations and finitely presented metabelian groups, Proc. London Math. Soc. (3) 41 (1980), no. 3, 439–464. MR 591649, DOI 10.1112/plms/s3-41.3.439
- Kai-Uwe Bux, Finiteness properties of soluble arithmetic groups over global function fields, Geom. Topol. 8 (2004), 611–644. MR 2057775, DOI 10.2140/gt.2004.8.611
- Kai-Uwe Bux and Kevin Wortman, Connectivity properties of horospheres in Euclidean buildings and applications to finiteness properties of discrete groups, Invent. Math. 185 (2011), no. 2, 395–419. MR 2819164, DOI 10.1007/s00222-011-0311-1
- Pierre-Emmanuel Caprace, Amenable groups and Hadamard spaces with a totally disconnected isometry group, Comment. Math. Helv. 84 (2009), no. 2, 437–455. MR 2495801, DOI 10.4171/CMH/168
- José R. Carrión, Marius Dadarlat, and Caleb Eckhardt, On groups with quasidiagonal $C^*$-algebras, J. Funct. Anal. 265 (2013), no. 1, 135–152. MR 3049883, DOI 10.1016/j.jfa.2013.04.004
- Pete L. Clark, A note on Euclidean order types, Order 32 (2015), no. 2, 157–178. MR 3353945, DOI 10.1007/s11083-014-9323-y
- Yves Cornulier and Romain Tessera, Dehn function and asymptotic cones of Abels’ group, J. Topol. 6 (2013), no. 4, 982–1008. MR 3145147, DOI 10.1112/jtopol/jtt019
- Yves de Cornulier, Luc Guyot, and Wolfgang Pitsch, On the isolated points in the space of groups, J. Algebra 307 (2007), no. 1, 254–277. MR 2278053, DOI 10.1016/j.jalgebra.2006.02.012
- Martin G. Fluch and Stefan Witzel, Brown’s criterion in Bredon homology, Homology Homotopy Appl. 15 (2013), no. 2, 153–162. MR 3138373, DOI 10.4310/HHA.2013.v15.n2.a9
- Ross Geoghegan, Topological methods in group theory, Graduate Texts in Mathematics, vol. 243, Springer, New York, 2008. MR 2365352, DOI 10.1007/978-0-387-74614-2
- Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. MR 1867354
- James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, vol. 9, Springer-Verlag, New York-Berlin, 1978. Second printing, revised. MR 499562
- Erasmus Landvogt, A compactification of the Bruhat-Tits building, Lecture Notes in Mathematics, vol. 1619, Springer-Verlag, Berlin, 1996. MR 1441308, DOI 10.1007/BFb0094594
- A. N. Lyul′ko, Family of solvable linear groups without a maximality condition for normal subgroups, Mat. Zametki 39 (1986), no. 4, 507–511, 621 (Russian). MR 842880
- J. P. May, A concise course in algebraic topology, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1999. MR 1702278
- Gaël Meigniez, Bouts d’un groupe opérant sur la droite. I. Théorie algébrique, Ann. Inst. Fourier (Grenoble) 40 (1990), no. 2, 271–312 (French, with English summary). MR 1070829, DOI 10.5802/aif.1214
- John Milnor, Construction of universal bundles. II, Ann. of Math. (2) 63 (1956), 430–436. MR 77932, DOI 10.2307/1970012
- John Meier, Holger Meinert, and Leonard VanWyk, Higher generation subgroup sets and the $\Sigma$-invariants of graph groups, Comment. Math. Helv. 73 (1998), no. 1, 22–44. MR 1610579, DOI 10.1007/s000140050044
- Burkhardt Renz, Geometrische Invarianten und Endlichkeitseigenschaften von Gruppen, Ph.D. Thesis, Johann Wolfgang Goethe-Universität Frankfurt am Main, 1988.
- Bernd Schulz, Spherical subcomplexes of spherical buildings, Geom. Topol. 17 (2013), no. 1, 531–562. MR 3039769, DOI 10.2140/gt.2013.17.531
- Yuri Santos Rego, On the finiteness length of some soluble linear groups, Canad. J. Math. 74 (2022), no. 5, 1209–1243. MR 4504662, DOI 10.4153/S0008414X21000213
- Robert Steinberg, Lectures on Chevalley groups, Yale University, New Haven, CT, 1968. Notes prepared by John Faulkner and Robert Wilson. MR 466335
- Rachel Skipper, Stefan Witzel, and Matthew C. B. Zaremsky, Simple groups separated by finiteness properties, Invent. Math. 215 (2019), no. 2, 713–740. MR 3910073, DOI 10.1007/s00222-018-0835-8
- Richard M. Weiss, The structure of affine buildings, Annals of Mathematics Studies, vol. 168, Princeton University Press, Princeton, NJ, 2009. MR 2468338
- Stefan Witzel, Abels’s groups revisited, Algebr. Geom. Topol. 13 (2013), no. 6, 3447–3467. MR 3248739, DOI 10.2140/agt.2013.13.3447
- Günter M. Ziegler, Lectures on polytopes, Graduate Texts in Mathematics, vol. 152, Springer-Verlag, New York, 1995. MR 1311028, DOI 10.1007/978-1-4613-8431-1
Bibliographic Information
- Eduard Schesler
- Affiliation: Fakultät für Mathematik und Informatik, FernUniversität in Hagen, 58084 Hagen, Germany
- MR Author ID: 1496107
- Email: eduard.schesler@fernuni-hagen.de
- Received by editor(s): April 24, 2022
- Received by editor(s) in revised form: November 7, 2022, and November 9, 2022
- Published electronically: January 27, 2023
- Additional Notes: The author was supported by the DFG grant WI 4079/4 within the SPP 2026 Geometry at infinity.
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 4173-4237
- MSC (2000): Primary 20F65, 20E42, 51E24, 20F16
- DOI: https://doi.org/10.1090/tran/8866
- MathSciNet review: 4586809