Finite free cumulants: Multiplicative convolutions, genus expansion and infinitesimal distributions
HTML articles powered by AMS MathViewer
- by Octavio Arizmendi, Jorge Garza-Vargas and Daniel Perales;
- Trans. Amer. Math. Soc. 376 (2023), 4383-4420
- DOI: https://doi.org/10.1090/tran/8884
- Published electronically: March 21, 2023
- HTML | PDF | Request permission
Abstract:
Given two polynomials $p(x), q(x)$ of degree $d$, we give a combinatorial formula for the finite free cumulants of $p(x)\boxtimes _d q(x)$. We show that this formula admits a topological expansion in terms of non-crossing multi-annular permutations on surfaces of different genera.
This topological expansion, on the one hand, deepens the connection between the theories of finite free probability and free probability, and in particular proves that $\boxtimes _d$ converges to $\boxtimes$ as $d$ goes to infinity. On the other hand, borrowing tools from the theory of second order freeness, we use our expansion to study the infinitesimal distribution of certain families of polynomials which include Hermite and Laguerre, and draw some connections with the theory of infinitesimal distributions for real random matrices.
Finally, building on our results we give a new short and conceptual proof of a recent result (see J. Hoskins and Z. Kabluchko [Exp. Math. (2021), pp. 1–27]; S. Steinerberger [Exp. Math. (2021), pp. 1–6]) that connects root distributions of polynomial derivatives with free fractional convolution powers.
References
- Octavio Arizmendi and Daniel Perales, Cumulants for finite free convolution, J. Combin. Theory Ser. A 155 (2018), 244–266. MR 3741428, DOI 10.1016/j.jcta.2017.11.012
- S. T. Belinschi and D. Shlyakhtenko, Free probability of type $B$: analytic interpretation and applications, Amer. J. Math. 134 (2012), no. 1, 193–234. MR 2876144, DOI 10.1353/ajm.2012.0003
- Mireille Bousquet-Mélou and Gilles Schaeffer, Enumeration of planar constellations, Adv. in Appl. Math. 24 (2000), no. 4, 337–368. MR 1761777, DOI 10.1006/aama.1999.0673
- Jacob Campbell and Zhi Yin, Finite free convolutions via Weingarten calculus, Random Matrices Theory Appl. 10 (2021), no. 4, Paper No. 2150038, 23. MR 4379543, DOI 10.1142/S2010326321500386
- Benoît Collins, James A. Mingo, Piotr Śniady, and Roland Speicher, Second order freeness and fluctuations of random matrices. III. Higher order freeness and free cumulants, Doc. Math. 12 (2007), 1–70. MR 2302524, DOI 10.4171/dm/220
- Robert Cori, Un code pour les graphes planaires et ses applications, Astérisque, No. 27, Société Mathématique de France, Paris, 1975. With an English abstract. MR 404045
- Ioana Dumitriu and Alan Edelman, Global spectrum fluctuations for the $\beta$-Hermite and $\beta$-Laguerre ensembles via matrix models, J. Math. Phys. 47 (2006), no. 6, 063302, 36. MR 2239975, DOI 10.1063/1.2200144
- Nathanaël Enriquez and Laurent Ménard, Asymptotic expansion of the expected spectral measure of Wigner matrices, Electron. Commun. Probab. 21 (2016), Paper No. 58, 11. MR 3548770, DOI 10.1214/16-ECP4351
- Uwe Franz, Takahiro Hasebe, and Sebastian Schleißinger, Monotone increment processes, classical Markov processes, and Loewner chains, Dissertationes Math. 552 (2020), 119. MR 4152669, DOI 10.4064/dm808-1-2020
- I. P. Goulden and D. M. Jackson, The combinatorial relationship between trees, cacti and certain connection coefficients for the symmetric group, European J. Combin. 13 (1992), no. 5, 357–365. MR 1181077, DOI 10.1016/S0195-6698(05)80015-0
- Aurelien Gribinski and Adam W. Marcus, A rectangular additive convolution for polynomials, Comb. Theory 2 (2022), no. 1, Paper No. 16, 42. MR 4406005, DOI 10.5070/c62156888
- N. Hartsfield and J. S. Werth, Spanning trees of the complete bipartite graph, Topics in combinatorics and graph theory (Oberwolfach, 1990) Physica, Heidelberg, 1990, pp. 339–346. MR 1100053
- Jeremy Hoskins and Zakhar Kabluchko, Dynamics of zeroes under repeated differentiation, Exp. Math. (2021), 1–27.
- Alain Jacques, Sur le genre d’une paire de substitutions, C. R. Acad. Sci. Paris Sér. A-B 267 (1968), A625–A627 (French). MR 262341
- Sergei Kerov, Interlacing measures, Kirillov’s seminar on representation theory, Amer. Math. Soc. Transl. Ser. 2, vol. 181, Amer. Math. Soc., Providence, RI, 1998, pp. 35–83. MR 1618739, DOI 10.1090/trans2/181/02
- Miklós Kornyik and György Michaletzky, Wigner matrices, the moments of roots of Hermite polynomials and the semicircle law, J. Approx. Theory 211 (2016), 29–41. MR 3547630, DOI 10.1016/j.jat.2016.07.006
- Bernadette Krawczyk and Roland Speicher, Combinatorics of free cumulants, J. Combin. Theory Ser. A 90 (2000), no. 2, 267–292. MR 1757277, DOI 10.1006/jcta.1999.3032
- Jonathan Leake and Nick Ryder, On the further structure of the finite free convolutions, Preprint, arXiv:1811.06382, 2018.
- Adam W. Marcus, Polynomial convolutions and (finite) free probability, Preprint, arXiv:2108.07054, 2021.
- Adam W. Marcus, Daniel A. Spielman, and Nikhil Srivastava, Interlacing families I: Bipartite Ramanujan graphs of all degrees, Ann. of Math. (2) 182 (2015), no. 1, 307–325. MR 3374962, DOI 10.4007/annals.2015.182.1.7
- Adam W. Marcus, Daniel A. Spielman, and Nikhil Srivastava, Finite free convolutions of polynomials, Probab. Theory Related Fields 182 (2022), no. 3-4, 807–848. MR 4408504, DOI 10.1007/s00440-021-01105-w
- Morris Marden, Geometry of polynomials, 2nd ed., Mathematical Surveys, No. 3, American Mathematical Society, Providence, RI, 1966. MR 225972
- James A. Mingo, Non-crossing annular pairings and the infinitesimal distribution of the GOE, J. Lond. Math. Soc. (2) 100 (2019), no. 3, 987–1012. MR 4048729, DOI 10.1112/jlms.12253
- James A. Mingo and Alexandru Nica, Annular noncrossing permutations and partitions, and second-order asymptotics for random matrices, Int. Math. Res. Not. 28 (2004), 1413–1460. MR 2052516, DOI 10.1155/S1073792804133023
- James A. Mingo, Piotr Śniady, and Roland Speicher, Second order freeness and fluctuations of random matrices. II. Unitary random matrices, Adv. Math. 209 (2007), no. 1, 212–240. MR 2294222, DOI 10.1016/j.aim.2006.05.003
- James A. Mingo and Roland Speicher, Second order freeness and fluctuations of random matrices. I. Gaussian and Wishart matrices and cyclic Fock spaces, J. Funct. Anal. 235 (2006), no. 1, 226–270. MR 2216446, DOI 10.1016/j.jfa.2005.10.007
- James A. Mingo and Roland Speicher, Free probability and random matrices, vol. 35, Springer, 2017.
- James A. Mingo and Josue Vazquez-Becerra, The asymptotic infinitesimal distribution of a real Wishart random matrix, Preprint, arXiv:2112.15231, 2021.
- Benjamin (Benno) Pine Mirabelli, Hermitian, Non-Hermitian and Multivariate Finite Free Probability, ProQuest LLC, Ann Arbor, MI, 2021. Thesis (Ph.D.)–Princeton University. MR 4285332
- Alexandru Nica and Roland Speicher, On the multiplication of free $N$-tuples of noncommutative random variables, Amer. J. Math. 118 (1996), no. 4, 799–837. MR 1400060, DOI 10.1353/ajm.1996.0034
- Alexandru Nica and Roland Speicher, Lectures on the combinatorics of free probability, vol. 13, Cambridge University Press, 2006.
- Amnon Rosenmann, Franz Lehner, and Aljoša Peperko, Polynomial convolutions in max-plus algebra, Linear Algebra Appl. 578 (2019), 370–401. MR 3956012, DOI 10.1016/j.laa.2019.05.020
- D. Shlyakhtenko, Free probability of type-B and asymptotics of finite-rank perturbations of random matrices, Indiana Univ. Math. J. 67 (2018), no. 2, 971–991. MR 3798863, DOI 10.1512/iumj.2018.67.7294
- Dimitri Shlyakhtenko and Terence Tao, Fractional free convolution powers, Indiana Univ. Math. J. 71 (2022), no. 6, 2551–2594. MR 4530049, DOI 10.1512/iumj.2022.71.9163
- Roland Speicher, Multiplicative functions on the lattice of noncrossing partitions and free convolution, Math. Ann. 298 (1994), no. 4, 611–628. MR 1268597, DOI 10.1007/BF01459754
- Roland Speicher, A conceptual proof of a basic result in the combinatorial approach to freeness, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 3 (2000), no. 2, 213–222. MR 1812697, DOI 10.1142/S0219025700000157
- Richard P. Stanley, Enumerative combinatorics. Volume 1, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 49, Cambridge University Press, Cambridge, 2012. MR 2868112
- Stefan Steinerberger, A nonlocal transport equation describing roots of polynomials under differentiation, Proc. Amer. Math. Soc. 147 (2019), no. 11, 4733–4744. MR 4011508, DOI 10.1090/proc/14699
- Stefan Steinerberger, Free convolution powers via roots of polynomials, Exp. Math. (2021), 1–6.
- G. Szegö, Bemerkungen zu einem Satz von J. H. Grace über die Wurzeln algebraischer Gleichungen, Math. Z. 13 (1922), no. 1, 28–55 (German). MR 1544526, DOI 10.1007/BF01485280
- G. Szegö, Orthogonal polynomials, vol. 23, American Mathematical Society, 1939.
- Dan Voiculescu, Limit laws for random matrices and free products, Invent. Math. 104 (1991), no. 1, 201–220. MR 1094052, DOI 10.1007/BF01245072
- D. V. Voiculescu, K. J. Dykema, and A. Nica, Free random variables, CRM Monograph Series, vol. 1, American Mathematical Society, Providence, RI, 1992. A noncommutative probability approach to free products with applications to random matrices, operator algebras and harmonic analysis on free groups. MR 1217253, DOI 10.1090/crmm/001
- J. L. Walsh, On the location of the roots of certain types of polynomials, Trans. Amer. Math. Soc. 24 (1922), no. 3, 163–180. MR 1501220, DOI 10.1090/S0002-9947-1922-1501220-0
Bibliographic Information
- Octavio Arizmendi
- Affiliation: CIMAT, Guanajuato, Mexico
- MR Author ID: 870892
- Email: octavius@cimat.mx
- Jorge Garza-Vargas
- Affiliation: Department of Mathematics, UC Berkeley, Berkeley, California
- MR Author ID: 1269940
- ORCID: 0000-0001-6258-0600
- Email: jgarzavargas@berkeley.edu
- Daniel Perales
- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas
- MR Author ID: 1246518
- ORCID: 0000-0002-1202-5470
- Email: daniel.perales@tamu.edu
- Received by editor(s): September 9, 2021
- Received by editor(s) in revised form: November 2, 2022, and December 13, 2022
- Published electronically: March 21, 2023
- Additional Notes: The first author gratefully acknowledges financial support by the grants Conacyt A1-S-9764 and SFB TRR 195.
The second author was supported by the NSF grant CCF-2009011.
The third author was supported by CONACyT (Mexico) via the scholarship 714236. - © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 4383-4420
- MSC (2020): Primary 26C10, 46L54
- DOI: https://doi.org/10.1090/tran/8884
- MathSciNet review: 4586815