A new approach to the generalized Springer correspondence
HTML articles powered by AMS MathViewer
- by William Graham, Martha Precup and Amber Russell;
- Trans. Amer. Math. Soc. 376 (2023), 3891-3918
- DOI: https://doi.org/10.1090/tran/8890
- Published electronically: March 20, 2023
- HTML | PDF | Request permission
Abstract:
The Springer resolution of the nilpotent cone is used to give a geometric construction of the irreducible representations of Weyl groups. Borho and MacPherson obtain the Springer correspondence by applying the decomposition theorem to the Springer resolution, establishing an injective map from the set of irreducible Weyl group representations to simple equivariant perverse sheaves on the nilpotent cone. In this manuscript, we consider a generalization of the Springer resolution using a variety defined by the first author. Our main result shows that in the type A case, applying the decomposition theorem to this map yields all simple perverse sheaves on the nilpotent cone with multiplicity as predicted by Lusztig’s generalized Springer correspondence.References
- Pramod N. Achar, Perverse sheaves and applications to representation theory, Mathematical Surveys and Monographs, vol. 258, American Mathematical Society, Providence, RI, [2021] ©2021. MR 4337423, DOI 10.1090/surv/258
- P. Achar, A. Henderson, D. Juteau, and S. Riche, Modular generalized Springer correspondence I: the general linear group, J. Eur. Math. Soc. 18 (2017), 1013–1070.
- Pramod Achar, Anthony Henderson, Daniel Juteau, and Simon Riche, Modular generalized Springer correspondence II: classical groups, J. Eur. Math. Soc. (JEMS) 19 (2017), no. 4, 1013–1070. MR 3626550, DOI 10.4171/JEMS/687
- A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171 (French). MR 751966
- B. Binegar, Data from the Atlas project, http://lie.math.okstate.edu/atlas/data/.
- Joseph Bernstein and Valery Lunts, Equivariant sheaves and functors, Lecture Notes in Mathematics, vol. 1578, Springer-Verlag, Berlin, 1994. MR 1299527, DOI 10.1007/BFb0073549
- Walter Borho and Robert MacPherson, Partial resolutions of nilpotent varieties, Analysis and topology on singular spaces, II, III (Luminy, 1981) Astérisque, vol. 101, Soc. Math. France, Paris, 1983, pp. 23–74. MR 737927
- Walter Borho and Robert MacPherson, Représentations des groupes de Weyl et homologie d’intersection pour les variétés nilpotentes, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 15, 707–710 (French, with English summary). MR 618892
- Roger W. Carter, Finite groups of Lie type, Wiley Classics Library, John Wiley & Sons, Ltd., Chichester, 1993. Conjugacy classes and complex characters; Reprint of the 1985 original; A Wiley-Interscience Publication. MR 1266626
- R. W. Carter, A survey of the work of George Lusztig, Nagoya Math. J. 182 (2006), 1–45. MR 2235338, DOI 10.1017/S0027763000026830
- Mark Andrea A. de Cataldo, Decomposition theorem for semi-simples, J. Singul. 14 (2016), 194–197. MR 3595140, DOI 10.1007/s11856-006-0006-2
- Mark Andrea de Cataldo, Perverse sheaves and the topology of algebraic varieties, Geometry of moduli spaces and representation theory, IAS/Park City Math. Ser., vol. 24, Amer. Math. Soc., Providence, RI, 2017, pp. 1–58. MR 3752459
- Mark Andrea A. de Cataldo and Luca Migliorini, The decomposition theorem, perverse sheaves and the topology of algebraic maps, Bull. Amer. Math. Soc. (N.S.) 46 (2009), no. 4, 535–633. MR 2525735, DOI 10.1090/S0273-0979-09-01260-9
- Lucas Fresse, Anna Melnikov, and Sammar Sakas-Obeid, On the structure of smooth components of Springer fibers, Proc. Amer. Math. Soc. 143 (2015), no. 6, 2301–2315. MR 3326013, DOI 10.1090/S0002-9939-2015-12460-4
- William Fulton, Introduction to toric varieties, Annals of Mathematics Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993. The William H. Roever Lectures in Geometry. MR 1234037, DOI 10.1515/9781400882526
- William Graham, Toric varieties and a generalization of the Springer resolution, Facets of algebraic geometry. Vol. I, London Math. Soc. Lecture Note Ser., vol. 472, Cambridge Univ. Press, Cambridge, 2022, pp. 333–370. MR 4381906
- James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York-Berlin, 1972. MR 323842, DOI 10.1007/978-1-4612-6398-2
- Birger Iversen, Cohomology of sheaves, Universitext, Springer-Verlag, Berlin, 1986. MR 842190, DOI 10.1007/978-3-642-82783-9
- Jens Carsten Jantzen, Nilpotent orbits in representation theory, Lie theory, Progr. Math., vol. 228, Birkhäuser Boston, Boston, MA, 2004, pp. 1–211. MR 2042689
- D. Kim, Euler characteristic of Springer fibers, Transform. Groups 24 (2019), no. 2, 403–428. MR 3948940, DOI 10.1007/s00031-018-9487-4
- G. Lusztig, Intersection cohomology complexes on a reductive group, Invent. Math. 75 (1984), no. 2, 205–272. MR 732546, DOI 10.1007/BF01388564
- G. Lusztig and N. Spaltenstein, On the generalized Springer correspondence for classical groups, Algebraic groups and related topics (Kyoto/Nagoya, 1983) Adv. Stud. Pure Math., vol. 6, North-Holland, Amsterdam, 1985, pp. 289–316. MR 803339, DOI 10.2969/aspm/00610289
- George Lusztig, Character sheaves. I, Adv. in Math. 56 (1985), no. 3, 193–237. MR 792706, DOI 10.1016/0001-8708(85)90034-9
- Amber Russell, Graham’s variety and perverse sheaves on the nilpotent cone, J. Algebra 557 (2020), 47–66. MR 4090832, DOI 10.1016/j.jalgebra.2020.04.002
- Toshiaki Shoji, Geometry of orbits and Springer correspondence, Astérisque 168 (1988), 9, 61–140. Orbites unipotentes et représentations, I. MR 1021493
- T. A. Springer, Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Invent. Math. 36 (1976), 173–207. MR 442103, DOI 10.1007/BF01390009
- T. A. Springer, A construction of representations of Weyl groups, Invent. Math. 44 (1978), no. 3, 279–293. MR 491988, DOI 10.1007/BF01403165
- Robert Steinberg, An occurrence of the Robinson-Schensted correspondence, J. Algebra 113 (1988), no. 2, 523–528. MR 929778, DOI 10.1016/0021-8693(88)90177-9
- Arik Wilbert, Topology of two-row Springer fibers for the even orthogonal and symplectic group, Trans. Amer. Math. Soc. 370 (2018), no. 4, 2707–2737. MR 3748583, DOI 10.1090/tran/7194
Bibliographic Information
- William Graham
- Affiliation: Department of Mathematics, University of Georgia, Boyd Graduate Studies Research Center, Athens, Georgia 30602
- MR Author ID: 321363
- Email: wag@math.uga.edu
- Martha Precup
- Affiliation: Department of Mathematics and Statistics, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130
- MR Author ID: 1043988
- Email: martha.precup@wustl.edu
- Amber Russell
- Affiliation: Department of Mathematical Sciences, Butler University, 4600 Sunset Avenue, Indianapolis, Indiana 46208
- MR Author ID: 789739
- ORCID: 0000-0002-7931-6088
- Email: acrusse3@butler.edu
- Received by editor(s): January 12, 2021
- Received by editor(s) in revised form: August 23, 2022
- Published electronically: March 20, 2023
- Additional Notes: The second author was partially supported by an AWM-NSF travel grant and by NSF grant DMS 1954001 during the course of this research.
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 3891-3918
- MSC (2020): Primary 14M15, 14L35; Secondary 20C33, 17B08
- DOI: https://doi.org/10.1090/tran/8890
- MathSciNet review: 4586800