Hitting probabilities of Gaussian random fields and collision of eigenvalues of random matrices
HTML articles powered by AMS MathViewer
- by Cheuk Yin Lee, Jian Song, Yimin Xiao and Wangjun Yuan;
- Trans. Amer. Math. Soc. 376 (2023), 4273-4299
- DOI: https://doi.org/10.1090/tran/8895
- Published electronically: March 20, 2023
- HTML | PDF | Request permission
Abstract:
Let $X= \{X(t), t \in \mathbb {R}^N\}$ be a centered Gaussian random field with values in $\mathbb {R}^d$ satisfying certain conditions and let $F \subset \mathbb {R}^d$ be a Borel set. In our main theorem, we provide a sufficient condition for $F$ to be polar for $X$, i.e. $\mathbb P\big ( X(t) \in F \text { for some } t \in \mathbb {R}^N\big ) = 0$, which improves significantly the main result in Dalang et al. [Ann. Probab. 45 (2017), pp. 4700–4751], where the case of $F$ being a singleton was considered. We provide a variety of examples of Gaussian random field for which our result is applicable. Moreover, by using our main theorem, we solve a problem on the existence of collisions of the eigenvalues of random matrices with Gaussian random field entries that was left open in Jaramillo and Nualart [Random Matrices Theory Appl. 9 (2020), p. 26] and Song et al. [J. Math. Anal. Appl. 502 (2021), p. 22].References
- Greg W. Anderson, Alice Guionnet, and Ofer Zeitouni, An introduction to random matrices, Cambridge Studies in Advanced Mathematics, vol. 118, Cambridge University Press, Cambridge, 2010. MR 2760897
- Hermine Biermé, Céline Lacaux, and Yimin Xiao, Hitting probabilities and the Hausdorff dimension of the inverse images of anisotropic Gaussian random fields, Bull. Lond. Math. Soc. 41 (2009), no. 2, 253–273. MR 2496502, DOI 10.1112/blms/bdn122
- Robert C. Dalang, Davar Khoshnevisan, and Eulalia Nualart, Hitting probabilities for systems of non-linear stochastic heat equations with additive noise, ALEA Lat. Am. J. Probab. Math. Stat. 3 (2007), 231–271. MR 2365643
- Robert C. Dalang, Davar Khoshnevisan, and Eulalia Nualart, Hitting probabilities for systems for non-linear stochastic heat equations with multiplicative noise, Probab. Theory Related Fields 144 (2009), no. 3-4, 371–427. MR 2496438, DOI 10.1007/s00440-008-0150-1
- Robert C. Dalang, Davar Khoshnevisan, and Eulalia Nualart, Hitting probabilities for systems of non-linear stochastic heat equations in spatial dimension $k\geq 1$, Stoch. Partial Differ. Equ. Anal. Comput. 1 (2013), no. 1, 94–151. MR 3327503, DOI 10.1007/s40072-013-0005-3
- Robert C. Dalang, Cheuk Yin Lee, Carl Mueller, and Yimin Xiao, Multiple points of Gaussian random fields, Electron. J. Probab. 26 (2021), Paper No. 17, 25. MR 4235468, DOI 10.1214/21-EJP589
- Robert C. Dalang, Carl Mueller, and Yimin Xiao, Polarity of points for Gaussian random fields, Ann. Probab. 45 (2017), no. 6B, 4700–4751. MR 3737922, DOI 10.1214/17-AOP1176
- Robert C. Dalang and Eulalia Nualart, Potential theory for hyperbolic SPDEs, Ann. Probab. 32 (2004), no. 3A, 2099–2148. MR 2073187, DOI 10.1214/009117904000000685
- Robert C. Dalang and Marta Sanz-Solé, Criteria for hitting probabilities with applications to systems of stochastic wave equations, Bernoulli 16 (2010), no. 4, 1343–1368. MR 2759182, DOI 10.3150/09-BEJ247
- Robert C. Dalang and Marta Sanz-Solé, Hitting probabilities for nonlinear systems of stochastic waves, Mem. Amer. Math. Soc. 237 (2015), no. 1120, v+75. MR 3401290, DOI 10.1090/memo/1120
- Freeman J. Dyson, A Brownian-motion model for the eigenvalues of a random matrix, J. Mathematical Phys. 3 (1962), 1191–1198. MR 148397, DOI 10.1063/1.1703862
- Kenneth Falconer, Fractal geometry, 3rd ed., John Wiley & Sons, Ltd., Chichester, 2014. Mathematical foundations and applications. MR 3236784
- Adrián Hinojosa-Calleja and Marta Sanz-Solé, Anisotropic Gaussian random fields: criteria for hitting probabilities and applications, Stoch. Partial Differ. Equ. Anal. Comput. 9 (2021), no. 4, 984–1030. MR 4333508, DOI 10.1007/s40072-021-00190-1
- Arturo Jaramillo and David Nualart, Collision of eigenvalues for matrix-valued processes, Random Matrices Theory Appl. 9 (2020), no. 4, 2030001, 26. MR 4133067, DOI 10.1142/S2010326320300016
- Shizuo Kakutani, On Brownian motions in $n$-space, Proc. Imp. Acad. Tokyo 20 (1944), 648–652. MR 14646
- Davar Khoshnevisan and Zhan Shi, Brownian sheet and capacity, Ann. Probab. 27 (1999), no. 3, 1135–1159. MR 1733143, DOI 10.1214/aop/1022677442
- Michel Ledoux and Michel Talagrand, Probability in Banach spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 23, Springer-Verlag, Berlin, 1991. Isoperimetry and processes. MR 1102015, DOI 10.1007/978-3-642-20212-4
- H. P. McKean Jr., Stochastic integrals, Probability and Mathematical Statistics, No. 5, Academic Press, New York-London, 1969. MR 247684
- David Nualart and Victor Pérez-Abreu, On the eigenvalue process of a matrix fractional Brownian motion, Stochastic Process. Appl. 124 (2014), no. 12, 4266–4282. MR 3264448, DOI 10.1016/j.spa.2014.07.017
- L. C. G. Rogers and Z. Shi, Interacting Brownian particles and the Wigner law, Probab. Theory Related Fields 95 (1993), no. 4, 555–570. MR 1217451, DOI 10.1007/BF01196734
- Jian Song, Yimin Xiao, and Wangjun Yuan, On collision of multiple eigenvalues for matrix-valued Gaussian processes, J. Math. Anal. Appl. 502 (2021), no. 2, Paper No. 125261, 22. MR 4252156, DOI 10.1016/j.jmaa.2021.125261
- Michel Talagrand, Hausdorff measure of trajectories of multiparameter fractional Brownian motion, Ann. Probab. 23 (1995), no. 2, 767–775. MR 1334170
- Michel Talagrand, Multiple points of trajectories of multiparameter fractional Brownian motion, Probab. Theory Related Fields 112 (1998), no. 4, 545–563. MR 1664704, DOI 10.1007/s004400050200
- Frédéric Testard, Processus gaussiens: polarité, points multiples, géométrie, Publ. du Laboratoire de Statistique et Probabilités, Université Paul-Sabatier, Toulouse, 1986.
- Yimin Xiao, Hölder conditions for the local times and the Hausdorff measure of the level sets of Gaussian random fields, Probab. Theory Related Fields 109 (1997), no. 1, 129–157. MR 1469923, DOI 10.1007/s004400050128
- Yimin Xiao, Hitting probabilities and polar sets for fractional Brownian motion, Stochastics Stochastics Rep. 66 (1999), no. 1-2, 121–151. MR 1687811, DOI 10.1080/17442509908834189
- Yimin Xiao, Sample path properties of anisotropic Gaussian random fields, A minicourse on stochastic partial differential equations, Lecture Notes in Math., vol. 1962, Springer, Berlin, 2009, pp. 145–212. MR 2508776, DOI 10.1007/978-3-540-85994-9_{5}
Bibliographic Information
- Cheuk Yin Lee
- Affiliation: Department of Mathematics, National Tsing Hua University, Hsinchu, Taiwan, Republic of China
- MR Author ID: 1176618
- Email: cylee@math.nthu.edu.tw
- Jian Song
- Affiliation: Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao, Shandong, 266237, People’s Republic of China; and School of Mathematics, Shandong University, Jinan, Shandong 250100, People’s Republic of China
- Email: txjsong@sdu.edu.cn
- Yimin Xiao
- Affiliation: Department of Statistics and Probability, Michigan State University, A-413 Wells Hall, East Lansing, Michigan 48824
- MR Author ID: 256757
- ORCID: 0000-0002-9474-1605
- Email: xiaoy@msu.edu
- Wangjun Yuan
- Affiliation: Department of Mathematics and Statistics, University of Ottawa, Canada
- MR Author ID: 1397217
- ORCID: 0000-0003-3837-3606
- Email: ywangjun@connect.hku.hk
- Received by editor(s): February 7, 2022
- Received by editor(s) in revised form: November 14, 2022
- Published electronically: March 20, 2023
- Additional Notes: The first author was partially supported by National Science and Technology Council Grant NSTC111-2115-M-007-015-MY2. The second author was partially supported by National Natural Science Foundation of China grant 12071256, and Major Basic Research Program of the Natural Science Foundation of Shandong Province in China ZR2019ZD42 and ZR2020ZD24. The third author was supported in part by the NSF grants DMS-1855185 and DMS-2153846.
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 4273-4299
- MSC (2020): Primary 60G15, 60G22, 60G17, 60B20
- DOI: https://doi.org/10.1090/tran/8895
- MathSciNet review: 4586811