Rigidity properties for some isometric extensions of partially hyperbolic actions on the torus
HTML articles powered by AMS MathViewer
- by Qinbo Chen and Danijela Damjanović;
- Trans. Amer. Math. Soc. 376 (2023), 4043-4083
- DOI: https://doi.org/10.1090/tran/8896
- Published electronically: March 21, 2023
- HTML | PDF | Request permission
Abstract:
This paper studies local rigidity for some isometric toral extensions of partially hyperbolic $\mathbb {Z}^k$ ($k\geqslant 2$) actions on the torus. We prove a $C^\infty$ local rigidity result for such actions, provided that the smooth perturbations of the actions satisfy the intersection property. We also give a local rigidity result within a class of volume preserving actions. Our method mainly uses a generalization of the Kolmogorov-Arnold-Moser iterative scheme.References
- Danijela Damjanović and Bassam Fayad, On local rigidity of partially hyperbolic affine $\Bbb Z^k$ actions, J. Reine Angew. Math. 751 (2019), 1–26. MR 3956690, DOI 10.1515/crelle-2016-0059
- Danijela Damjanović and Anatole Katok, Local rigidity of partially hyperbolic actions I. KAM method and $\Bbb Z^k$ actions on the torus, Ann. of Math. (2) 172 (2010), no. 3, 1805–1858. MR 2726100, DOI 10.4007/annals.2010.172.1805
- Danijela Damjanović and Anatole Katok, Local rigidity of partially hyperbolic actions. II: The geometric method and restrictions of Weyl chamber flows on $SL(n,\Bbb R)/\Gamma$, Int. Math. Res. Not. IMRN 19 (2011), 4405–4430. MR 2838045, DOI 10.1093/imrn/rnq252
- R. de la Llave, J. M. Marco, and R. Moriyón, Canonical perturbation theory of Anosov systems and regularity results for the Livšic cohomology equation, Ann. of Math. (2) 123 (1986), no. 3, 537–611. MR 840722, DOI 10.2307/1971334
- Danijela Damjanović, Amie Wilkinson, and Disheng Xu, Pathology and asymmetry: centralizer rigidity for partially hyperbolic diffeomorphisms, Duke Math. J. 170 (2021), no. 17, 3815–3890. MR 4340725, DOI 10.1215/00127094-2021-0053
- Manfred Einsiedler and Travis Fisher, Differentiable rigidity for hyperbolic toral actions, Israel J. Math. 157 (2007), 347–377. MR 2342454, DOI 10.1007/s11856-006-0016-0
- David Fisher, Local rigidity of group actions: past, present, future, Dynamics, ergodic theory, and geometry, Math. Sci. Res. Inst. Publ., vol. 54, Cambridge Univ. Press, Cambridge, 2007, pp. 45–97. MR 2369442, DOI 10.1017/CBO9780511755187.003
- Bassam Fayad and Kostantin Khanin, Smooth linearization of commuting circle diffeomorphisms, Ann. of Math. (2) 170 (2009), no. 2, 961–980. MR 2552115, DOI 10.4007/annals.2009.170.961
- David Fisher, Boris Kalinin, and Ralf Spatzier, Global rigidity of higher rank Anosov actions on tori and nilmanifolds, J. Amer. Math. Soc. 26 (2013), no. 1, 167–198. With an appendix by James F. Davis. MR 2983009, DOI 10.1090/S0894-0347-2012-00751-6
- David Fisher and Gregory Margulis, Local rigidity of affine actions of higher rank groups and lattices, Ann. of Math. (2) 170 (2009), no. 1, 67–122. MR 2521112, DOI 10.4007/annals.2009.170.67
- Alexander Gorodnik and Ralf Spatzier, Mixing properties of commuting nilmanifold automorphisms, Acta Math. 215 (2015), no. 1, 127–159. MR 3413978, DOI 10.1007/s11511-015-0130-0
- Richard S. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 1, 65–222. MR 656198, DOI 10.1090/S0273-0979-1982-15004-2
- Steven Hurder, Rigidity for Anosov actions of higher rank lattices, Ann. of Math. (2) 135 (1992), no. 2, 361–410. MR 1154597, DOI 10.2307/2946593
- Yitzhak Katznelson, Ergodic automorphisms of $T^{n}$ are Bernoulli shifts, Israel J. Math. 10 (1971), 186–195. MR 294602, DOI 10.1007/BF02771569
- Anatole Katok and Svetlana Katok, Higher cohomology for abelian groups of toral automorphisms. II. The partially hyperbolic case, and corrigendum, Ergodic Theory Dynam. Systems 25 (2005), no. 6, 1909–1917. MR 2183300, DOI 10.1017/S0143385705000271
- A. Katok and J. Lewis, Local rigidity for certain groups of toral automorphisms, Israel J. Math. 75 (1991), no. 2-3, 203–241. MR 1164591, DOI 10.1007/BF02776025
- A. Katok, J. Lewis, and R. Zimmer, Cocycle superrigidity and rigidity for lattice actions on tori, Topology 35 (1996), no. 1, 27–38. MR 1367273, DOI 10.1016/0040-9383(95)00012-7
- Anatole Katok and Viorel Niţică, Rigidity in higher rank abelian group actions. Volume I, Cambridge Tracts in Mathematics, vol. 185, Cambridge University Press, Cambridge, 2011. Introduction and cocycle problem. MR 2798364, DOI 10.1017/CBO9780511803550
- A. Katok and R. J. Spatzier, Differential rigidity of Anosov actions of higher rank abelian groups and algebraic lattice actions, Tr. Mat. Inst. Steklova 216 (1997), no. Din. Sist. i Smezhnye Vopr., 292–319; English transl., Proc. Steklov Inst. Math. 1(216) (1997), 287–314. MR 1632177
- Boris Kalinin and Victoria Sadovskaya, Global rigidity for totally nonsymplectic Anosov $\Bbb Z^k$ actions, Geom. Topol. 10 (2006), 929–954. MR 2240907, DOI 10.2140/gt.2006.10.929
- Boris Kalinin and Ralf Spatzier, On the classification of Cartan actions, Geom. Funct. Anal. 17 (2007), no. 2, 468–490. MR 2322492, DOI 10.1007/s00039-007-0602-2
- Jürgen Moser, On commuting circle mappings and simultaneous Diophantine approximations, Math. Z. 205 (1990), no. 1, 105–121. MR 1069487, DOI 10.1007/BF02571227
- Viorel Niţică and Andrei Török, Cohomology of dynamical systems and rigidity of partially hyperbolic actions of higher-rank lattices, Duke Math. J. 79 (1995), no. 3, 751–810. MR 1355183, DOI 10.1215/S0012-7094-95-07920-4
- Viorel Niţică and Andrei Török, Local rigidity of certain partially hyperbolic actions of product type, Ergodic Theory Dynam. Systems 21 (2001), no. 4, 1213–1237. MR 1849607, DOI 10.1017/S0143385701001560
- Federico Rodriguez Hertz, Global rigidity of certain abelian actions by toral automorphisms, J. Mod. Dyn. 1 (2007), no. 3, 425–442. MR 2318497, DOI 10.3934/jmd.2007.1.425
- Federico Rodriguez Hertz and Zhiren Wang, Global rigidity of higher rank abelian Anosov algebraic actions, Invent. Math. 198 (2014), no. 1, 165–209. MR 3260859, DOI 10.1007/s00222-014-0499-y
- Carl Ludwig Siegel and Jürgen K. Moser, Lectures on celestial mechanics, Die Grundlehren der mathematischen Wissenschaften, Band 187, Springer-Verlag, New York-Heidelberg, 1971. Translation by Charles I. Kalme. MR 502448, DOI 10.1007/978-3-642-87284-6
- A. N. Starkov, The first cohomology group, mixing, and minimal sets of the commutative group of algebraic actions on a torus, J. Math. Sci. (New York) 95 (1999), no. 5, 2576–2582. Dynamical systems. 7. MR 1712745, DOI 10.1007/BF02169057
- Dietmar Salamon and Eduard Zehnder, KAM theory in configuration space, Comment. Math. Helv. 64 (1989), no. 1, 84–132. MR 982563, DOI 10.1007/BF02564665
- Andrei Török, Rigidity of partially hyperbolic actions of property (T) groups, Discrete Contin. Dyn. Syst. 9 (2003), no. 1, 193–208. MR 1951318, DOI 10.3934/dcds.2003.9.193
- Kurt Vinhage and Zhenqi Jenny Wang, Local rigidity of higher rank homogeneous abelian actions: a complete solution via the geometric method, Geom. Dedicata 200 (2019), 385–439. MR 3956203, DOI 10.1007/s10711-018-0379-5
- E. Zehnder, Generalized implicit function theorems with applications to some small divisor problems. I, Comm. Pure Appl. Math. 28 (1975), 91–140. MR 380867, DOI 10.1002/cpa.3160280104
- Robert J. Zimmer, Actions of semisimple groups and discrete subgroups, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 1247–1258. MR 934329
Bibliographic Information
- Qinbo Chen
- Affiliation: Department of Mathematics, Nanjing University, Nanjing 210093, China
- MR Author ID: 1184389
- ORCID: 0000-0002-2283-4220
- Email: qinbochen1990@gmail.com
- Danijela Damjanović
- Affiliation: Department of Mathematics, Kungliga Tekniska Högskolan, Lindstedtsvägen 25, SE-100 44 Stockholm, Sweden
- Email: ddam@kth.se
- Received by editor(s): February 18, 2022
- Received by editor(s) in revised form: October 19, 2022
- Published electronically: March 21, 2023
- Additional Notes: Our work was supported by Swedish Research Council grant VR 2019-04641 and the Wallenberg Foundation grant for international postdocs 2020.
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 4043-4083
- MSC (2020): Primary 37C15, 37C85, 37D30
- DOI: https://doi.org/10.1090/tran/8896
- MathSciNet review: 4586805