Compactified Jacobians as Mumford models
HTML articles powered by AMS MathViewer
- by Karl Christ, Sam Payne and Tif Shen;
- Trans. Amer. Math. Soc. 376 (2023), 4605-4630
- DOI: https://doi.org/10.1090/tran/8875
- Published electronically: April 12, 2023
- HTML | PDF | Request permission
Abstract:
We show that relative compactified Jacobians of one-parameter smoothings of a nodal curve of genus $g$ are Mumford models of the generic fiber. Each such model is given by an admissible polytopal decomposition of the skeleton of the Jacobian. We describe the decompositions corresponding to compactified Jacobians explicitly in terms of the auxiliary stability data and find, in particular, that in degree $g$ there is a unique compactified Jacobian encoding slope stability, and it is induced by the tropical break divisor decomposition.References
- Yang An, Matthew Baker, Greg Kuperberg, and Farbod Shokrieh, Canonical representatives for divisor classes on tropical curves and the matrix-tree theorem, Forum Math. Sigma 2 (2014), Paper No. e24, 25. MR 3264262, DOI 10.1017/fms.2014.25
- Valery Alexeev, Compactified Jacobians and Torelli map, Publ. Res. Inst. Math. Sci. 40 (2004), no. 4, 1241–1265. MR 2105707, DOI 10.2977/prims/1145475446
- Jarod Alper, Good moduli spaces for Artin stacks, Ann. Inst. Fourier (Grenoble) 63 (2013), no. 6, 2349–2402 (English, with English and French summaries). MR 3237451, DOI 10.5802/aif.2833
- Valery Alexeev and Iku Nakamura, On Mumford’s construction of degenerating abelian varieties, Tohoku Math. J. (2) 51 (1999), no. 3, 399–420. MR 1707764, DOI 10.2748/tmj/1178224770
- Alex Abreu and Marco Pacini, The universal tropical Jacobian and the skeleton of the Esteves’ universal Jacobian, Proc. Lond. Math. Soc. (3) 120 (2020), no. 3, 328–369. MR 4008373, DOI 10.1112/plms.12298
- Spencer Backman, Riemann-Roch theory for graph orientations, Adv. Math. 309 (2017), 655–691. MR 3607288, DOI 10.1016/j.aim.2017.01.005
- Vladimir G. Berkovich, Spectral theory and analytic geometry over non-Archimedean fields, Mathematical Surveys and Monographs, vol. 33, American Mathematical Society, Providence, RI, 1990. MR 1070709, DOI 10.1090/surv/033
- Matthew Baker and Xander Faber, Metric properties of the tropical Abel-Jacobi map, J. Algebraic Combin. 33 (2011), no. 3, 349–381. MR 2772537, DOI 10.1007/s10801-010-0247-3
- Siegfried Bosch and Werner Lütkebohmert, Stable reduction and uniformization of abelian varieties. II, Invent. Math. 78 (1984), no. 2, 257–297. MR 767194, DOI 10.1007/BF01388596
- Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud, Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 21, Springer-Verlag, Berlin, 1990. MR 1045822, DOI 10.1007/978-3-642-51438-8
- Matthew Baker, Sam Payne, and Joseph Rabinoff, On the structure of non-Archimedean analytic curves, Tropical and non-Archimedean geometry, Contemp. Math., vol. 605, Amer. Math. Soc., Providence, RI, 2013, pp. 93–121. MR 3204269, DOI 10.1090/conm/605/12113
- Matthew Baker, Sam Payne, and Joseph Rabinoff, Nonarchimedean geometry, tropicalization, and metrics on curves, Algebr. Geom. 3 (2016), no. 1, 63–105. MR 3455421, DOI 10.14231/AG-2016-004
- Matthew Baker and Joseph Rabinoff, The skeleton of the Jacobian, the Jacobian of the skeleton, and lifting meromorphic functions from tropical to algebraic curves, Int. Math. Res. Not. IMRN 16 (2015), 7436–7472. MR 3428970, DOI 10.1093/imrn/rnu168
- Lucia Caporaso, A compactification of the universal Picard variety over the moduli space of stable curves, J. Amer. Math. Soc. 7 (1994), no. 3, 589–660. MR 1254134, DOI 10.1090/S0894-0347-1994-1254134-8
- Sebastian Casalaina-Martin, Jesse Leo Kass, and Filippo Viviani, The local structure of compactified Jacobians, Proc. Lond. Math. Soc. (3) 110 (2015), no. 2, 510–542. MR 3335286, DOI 10.1112/plms/pdu063
- Eduardo Esteves and Marco Pacini, Semistable modifications of families of curves and compactified Jacobians, Ark. Mat. 54 (2016), no. 1, 55–83. MR 3475818, DOI 10.1007/s11512-015-0220-4
- Eduardo Esteves, Compactifying the relative Jacobian over families of reduced curves, Trans. Amer. Math. Soc. 353 (2001), no. 8, 3045–3095. MR 1828599, DOI 10.1090/S0002-9947-01-02746-5
- Eduardo Esteves, Compactified Jacobians of curves with spine decompositions, Geom. Dedicata 139 (2009), 167–181. MR 2481843, DOI 10.1007/s10711-008-9322-5
- Walter Gubler and Alejandro Soto, Classification of normal toric varieties over a valuation ring of rank one, Doc. Math. 20 (2015), 171–198. MR 3398711, DOI 10.4171/dm/488
- Walter Gubler, Non-Archimedean canonical measures on abelian varieties, Compos. Math. 146 (2010), no. 3, 683–730. MR 2644932, DOI 10.1112/S0010437X09004679
- Walter Gubler, A guide to tropicalizations, Algebraic and combinatorial aspects of tropical geometry, Contemp. Math., vol. 589, Amer. Math. Soc., Providence, RI, 2013, pp. 125–189. MR 3088913, DOI 10.1090/conm/589/11745
- Daniel Huybrechts and Manfred Lehn, The geometry of moduli spaces of sheaves, Aspects of Mathematics, E31, Friedr. Vieweg & Sohn, Braunschweig, 1997. MR 1450870, DOI 10.1007/978-3-663-11624-0
- Masa-Nori Ishida, Compactifications of a family of generalized Jacobian varieties, Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977) Kinokuniya Book Store, Tokyo, 1978, pp. 503–524. MR 578869
- Margarida Melo, Antonio Rapagnetta, and Filippo Viviani, Fine compactified Jacobians of reduced curves, Trans. Amer. Math. Soc. 369 (2017), no. 8, 5341–5402. MR 3646765, DOI 10.1090/tran/6823
- David Mumford, An analytic construction of degenerating abelian varieties over complete rings, Compositio Math. 24 (1972), 239–272. MR 352106
- Margarida Melo and Filippo Viviani, Fine compactified Jacobians, Math. Nachr. 285 (2012), no. 8-9, 997–1031. MR 2928396, DOI 10.1002/mana.201100021
- Samouil Molcho and Jonathan Wise, The logarithmic Picard group and its tropicalization, Compos. Math. 158 (2022), no. 7, 1477–1562. MR 4479817, DOI 10.1112/s0010437x22007527
- Grigory Mikhalkin and Ilia Zharkov, Tropical curves, their Jacobians and theta functions, Curves and abelian varieties, Contemp. Math., vol. 465, Amer. Math. Soc., Providence, RI, 2008, pp. 203–230. MR 2457739, DOI 10.1090/conm/465/09104
- Tadao Oda, Convex polyhedral tilings hidden in crystals and quasicrystals, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 107 (2013), no. 1, 123–143. MR 3031266, DOI 10.1007/s13398-012-0078-2
- Tadao Oda and C. S. Seshadri, Compactifications of the generalized Jacobian variety, Trans. Amer. Math. Soc. 253 (1979), 1–90. MR 536936, DOI 10.1090/S0002-9947-1979-0536936-4
- Carlos T. Simpson, Moduli of representations of the fundamental group of a smooth projective variety. I, Inst. Hautes Études Sci. Publ. Math. 79 (1994), 47–129. MR 1307297, DOI 10.1007/BF02698887
Bibliographic Information
- Karl Christ
- Affiliation: Institute of Algebraic Geometry, Leibniz University Hannover, Welfengarten 1, 30167 Hanover, Germany; and Department of Mathematics, Ben-Gurion University of the Negev, P.O.Box 653, Beer Sheva, 84105, Israel
- MR Author ID: 1309111
- Email: kchrist@math.uni-hannover.de
- Sam Payne
- Affiliation: Department of Mathematics, University of Texas at Austin, 2515 Speedway, RLM 8.100, Austin, Texas 78712
- MR Author ID: 652681
- Email: sampayne@utexas.edu
- Tif Shen
- Affiliation: Mathematics Department, Yale University, New Haven, Connecticut 06511
- MR Author ID: 1142936
- Email: jif.shen@gmail.com
- Received by editor(s): May 16, 2022
- Received by editor(s) in revised form: September 2, 2022
- Published electronically: April 12, 2023
- Additional Notes: The first author was partially supported by the Israel Science Foundation (grant No. 821/16). The second author was partially supported by NSF DMS-1702428, NSF DMS-2001502, and NSF DMS-2053261
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 4605-4630
- MSC (2020): Primary 14H40, 14T20, 14G22
- DOI: https://doi.org/10.1090/tran/8875
- MathSciNet review: 4608426