Superconvergence and regularity of densities in free probability
HTML articles powered by AMS MathViewer
- by Hari Bercovici, Jiun-Chau Wang and Ping Zhong;
- Trans. Amer. Math. Soc. 376 (2023), 4901-4956
- DOI: https://doi.org/10.1090/tran/8891
- Published electronically: March 20, 2023
- HTML | PDF | Request permission
Abstract:
The phenomenon of superconvergence, first observed in the central limit theorem of free probability, was subsequently extended to arbitrary limit laws for free additive convolution. We show that the same phenomenon occurs for the multiplicative versions of free convolution on the positive line and on the unit circle. We also show that a certain Hölder regularity, first demonstrated by Biane for the density of a free additive convolution with a semicircular law, extends to free (additive and multiplicative) convolutions with arbitrary freely infinitely divisible distributions.References
- N. I. Akhiezer, The classical moment problem, Hafner Publishing Co., New York, 1965.
- Michael Anshelevich, Jiun-Chau Wang, and Ping Zhong, Local limit theorems for multiplicative free convolutions, J. Funct. Anal. 267 (2014), no. 9, 3469–3499. MR 3261117, DOI 10.1016/j.jfa.2014.08.015
- Zhigang Bao, László Erdős, and Kevin Schnelli, Local stability of the free additive convolution, J. Funct. Anal. 271 (2016), no. 3, 672–719. MR 3506962, DOI 10.1016/j.jfa.2016.04.006
- S. T. Belinschi and H. Bercovici, Partially defined semigroups relative to multiplicative free convolution, Int. Math. Res. Not. 2 (2005), 65–101. MR 2128863, DOI 10.1155/IMRN.2005.65
- S. T. Belinschi, H. Bercovici, and C.-W. Ho, On the convergence of Denjoy-Wolff points, Preprint, arXiv:2203.16728v2, 2022.
- Serban T. Belinschi, Marek Bożejko, Franz Lehner, and Roland Speicher, The normal distribution is $\boxplus$-infinitely divisible, Adv. Math. 226 (2011), no. 4, 3677–3698. MR 2764902, DOI 10.1016/j.aim.2010.10.025
- Serban Teodor Belinschi, The atoms of the free multiplicative convolution of two probability distributions, Integral Equations Operator Theory 46 (2003), no. 4, 377–386. MR 1997977, DOI 10.1007/s00020-002-1145-4
- Florent Benaych-Georges, Taylor expansions of $R$-transforms: application to supports and moments, Indiana Univ. Math. J. 55 (2006), no. 2, 465–481. MR 2225442, DOI 10.1512/iumj.2006.55.2691
- Hari Bercovici and Vittorino Pata, A free analogue of Hinčin’s characterization of infinite divisibility, Proc. Amer. Math. Soc. 128 (2000), no. 4, 1011–1015. MR 1636930, DOI 10.1090/S0002-9939-99-05087-X
- H. Bercovici and D. Voiculescu, Superconvergence to the central limit and failure of the Cramér theorem for free random variables, Probab. Theory Related Fields 103 (1995), no. 2, 215–222. MR 1355057, DOI 10.1007/BF01204215
- Hari Bercovici and Dan Voiculescu, Lévy-Hinčin type theorems for multiplicative and additive free convolution, Pacific J. Math. 153 (1992), no. 2, 217–248. MR 1151559, DOI 10.2140/pjm.1992.153.217
- Hari Bercovici and Dan Voiculescu, Free convolution of measures with unbounded support, Indiana Univ. Math. J. 42 (1993), 733–773.
- Hari Bercovici and Dan Voiculescu, Regularity questions for free convolution, Nonselfadjoint operator algebras, operator theory, and related topics, Oper. Theory Adv. Appl., vol. 104, Birkhäuser, Basel, 1998, pp. 37–47. MR 1639647
- Hari Bercovici and Vittorino Pata, Limit laws for products of free and independent random variables, Studia Math. 141 (2000), no. 1, 43–52. MR 1782911, DOI 10.4064/sm-141-1-43-52
- Hari Bercovici and Jiun-Chau Wang, Limit theorems for free multiplicative convolutions, Trans. Amer. Math. Soc. 360 (2008), no. 11, 6089–6102. MR 2425704, DOI 10.1090/S0002-9947-08-04507-8
- Hari Bercovici, Jiun-Chau Wang, and Ping Zhong, Superconvergence to freely infinitely divisible distributions, Pacific J. Math. 292 (2018), no. 2, 273–290. MR 3733974, DOI 10.2140/pjm.2018.292.273
- Hari Bercovici, Ching-Wei Ho, Jiun-Chau Wang, and Ping Zhong, Superconvergence in free probability limit theorems for arbitrary triangular arrays, Proc. Amer. Math. Soc. 150 (2022), no. 12, 5253–5265. MR 4494601, DOI 10.1090/proc/16033
- Philippe Biane, On the free convolution with a semi-circular distribution, Indiana Univ. Math. J. 46 (1997), no. 3, 705–718. MR 1488333, DOI 10.1512/iumj.1997.46.1467
- Philippe Biane, Processes with free increments, Math. Z. 227 (1998), 143–174.
- Gennadii P. Chistyakov and Friedrich Götze, The arithmetic of distributions in free probability theory, Cent. Eur. J. Math. 9 (2011), no. 5, 997–1050. MR 2824443, DOI 10.2478/s11533-011-0049-4
- Joseph A. Cima, Alec L. Matheson, and William T. Ross, The Cauchy transform, Mathematical Surveys and Monographs, vol. 125, American Mathematical Society, Providence, RI, 2006. MR 2215991, DOI 10.1090/surv/125
- Tom Claeys, Arno B. J. Kuijlaars, Karl Liechty, and Dong Wang, Propagation of singular behavior for Gaussian perturbations of random matrices, Comm. Math. Phys. 362 (2018), no. 1, 1–54. MR 3833603, DOI 10.1007/s00220-018-3195-8
- P. Deift, T. Kriecherbauer, and K. T.-R. McLaughlin, New results on the equilibrium measure for logarithmic potentials in the presence of an external field, J. Approx. Theory 95 (1998), no. 3, 388–475. MR 1657691, DOI 10.1006/jath.1997.3229
- P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides, and X. Zhou, Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory, Comm. Pure Appl. Math. 52 (1999), no. 11, 1335–1425. MR 1702716, DOI 10.1002/(SICI)1097-0312(199911)52:11<1335::AID-CPA1>3.0.CO;2-1
- James Dugundji, Topology, Allyn and Bacon, Inc., Boston, MA, 1966. MR 193606
- P. Fatou, Séries trigonométriques et séries de Taylor, Acta Math. 30 (1906), no. 1, 335–400 (French). MR 1555035, DOI 10.1007/BF02418579
- B. V. Gnedenko and A. N. Kolmogorov, Limit distributions for sums of independent random variables, Revised edition, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1968. Translated from the Russian, annotated, and revised by K. L. Chung; With appendices by J. L. Doob and P. L. Hsu. MR 233400
- David S. Greenstein, On the analytic continuation of functions which map the upper half plane into itself, J. Math. Anal. Appl. 1 (1960), 355–362. MR 125953, DOI 10.1016/0022-247X(60)90009-3
- Hao-Wei Huang, Supports of measures in a free additive convolution semigroup, Int. Math. Res. Not. IMRN 12 (2015), 4269–4292. MR 3356753, DOI 10.1093/imrn/rnu064
- Hao-Wei Huang and Ping Zhong, On the supports of measures in free multiplicative convolution semigroups, Math. Z. 278 (2014), no. 1-2, 321–345. MR 3267581, DOI 10.1007/s00209-014-1317-3
- Hao-Wei Huang and Jiun-Chau Wang, Regularity results for free Lévy processes, preprint, 2018.
- Hao-Wei Huang and Jiun-Chau Wang, Regularity results for free Lévy processes, Adv. Math. 402 (2022), Paper No. 108323, 42. MR 4401820, DOI 10.1016/j.aim.2022.108323
- V. Kargin, An inequality for the distance between densities of free convolutions, Ann. Probab. 41 (2013), no. 5, 3241–3260. MR 3127881, DOI 10.1214/12-AOP756
- Joel H. Shapiro, Composition operators and classical function theory, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. MR 1237406, DOI 10.1007/978-1-4612-0887-7
- Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, NJ, 1971. MR 304972
- Dan Voiculescu, Symmetries of some reduced free product $C^\ast$-algebras, Operator algebras and their connections with topology and ergodic theory (Buşteni, 1983) Lecture Notes in Math., vol. 1132, Springer, Berlin, 1985, pp. 556–588. MR 799593, DOI 10.1007/BFb0074909
- Dan Voiculescu, Addition of certain noncommuting random variables, J. Funct. Anal. 66 (1986), no. 3, 323–346. MR 839105, DOI 10.1016/0022-1236(86)90062-5
- Dan Voiculescu, Multiplication of certain noncommuting random variables, J. Operator Theory 18 (1987), 223–235.
- Jiun-Chau Wang, Local limit theorems in free probability theory, Ann. Probab. 38 (2010), no. 4, 1492–1506. MR 2663634, DOI 10.1214/09-AOP505
- Ping Zhong, On the free convolution with a free multiplicative analogue of the normal distribution, J. Theoret. Probab. 28 (2015), no. 4, 1354–1379. MR 3422934, DOI 10.1007/s10959-014-0556-x
Bibliographic Information
- Hari Bercovici
- Affiliation: Department of Mathematics, Indiana University, Bloomington, Indiana 47405
- MR Author ID: 34985
- ORCID: 0000-0002-5356-2467
- Email: bercovic@indiana.edu
- Jiun-Chau Wang
- Affiliation: Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon S7N 5E6, Canada
- MR Author ID: 833997
- Email: jcwang@math.usask.ca
- Ping Zhong
- Affiliation: Department of Mathematics and Statistics, University of Wyoming, Laramie, Wyoming 82071-3036
- MR Author ID: 1029233
- Email: pzhong@uwyo.edu
- Received by editor(s): July 14, 2022
- Received by editor(s) in revised form: December 27, 2022
- Published electronically: March 20, 2023
- Additional Notes: The second author was supported by a NSERC Canada Discovery Grant. The third author was supported in part by a grant from the Simons Foundation and a start-up grant from the University of Wyoming.
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 4901-4956
- MSC (2020): Primary 46L54
- DOI: https://doi.org/10.1090/tran/8891
- MathSciNet review: 4608435