Bracket words: A generalisation of Sturmian words arising from generalised polynomials
HTML articles powered by AMS MathViewer
- by Boris Adamczewski and Jakub Konieczny;
- Trans. Amer. Math. Soc. 376 (2023), 4979-5044
- DOI: https://doi.org/10.1090/tran/8906
- Published electronically: April 19, 2023
- HTML | PDF | Request permission
Abstract:
Generalised polynomials are maps constructed by applying the floor function, addition, and multiplication to polynomials. Despite superficial similarity, generalised polynomials exhibit many phenomena which are impossible for polynomials. In particular, there exist generalised polynomial sequences which take only finitely many values without being periodic; examples of such sequences include the Sturmian words, as well as more complicated sequences like $\left \lfloor 2\left \{ \pi n^2 + \sqrt {2}n\left \lfloor \sqrt {3}n \right \rfloor \right \} \right \rfloor$.
The purpose of this paper is to investigate letter-to-letter codings of finitely-valued generalised polynomial sequences, which we call bracket words, from the point of view of combinatorics on words. We survey existing results on generalised polynomials and their corollaries in terms of bracket words, and also prove several new results. Our main contribution is a polynomial bound on the subword complexity of bracket words.
References
- George E. Andrews, Richard A. Askey, Bruce C. Berndt, K. G. Ramanathan, and Robert A. Rankin (eds.), Ramanujan revisited, Academic Press, Inc., Boston, MA, 1988. MR 938955
- Boris Adamczewski, Balances for fixed points of primitive substitutions, Theoret. Comput. Sci. 307 (2003), no. 1, 47–75. Words. MR 2014730, DOI 10.1016/S0304-3975(03)00092-6
- Boris Adamczewski, Symbolic discrepancy and self-similar dynamics, Ann. Inst. Fourier (Grenoble) 54 (2004), no. 7, 2201–2234 (2005) (English, with English and French summaries). MR 2139693, DOI 10.5802/aif.2079
- L. Auslander, L. Green, and F. Hahn, Flows on homogeneous spaces, Annals of Mathematics Studies, No. 53, Princeton University Press, Princeton, NJ, 1963. With the assistance of L. Markus and W. Massey, and an appendix by L. Greenberg. MR 167569, DOI 10.1515/9781400882021
- Jean-Paul Allouche, Sur la complexité des suites infinies, Bull. Belg. Math. Soc. Simon Stevin 1 (1994), no. 2, 133–143 (French, with English and French summaries). Journées Montoises (Mons, 1992). MR 1318964
- Jean-Paul Allouche and Jeffrey Shallit, The ring of $k$-regular sequences, Theoret. Comput. Sci. 98 (1992), no. 2, 163–197. MR 1166363, DOI 10.1016/0304-3975(92)90001-V
- Jean-Paul Allouche and Jeffrey Shallit, Automatic sequences, Cambridge University Press, Cambridge, 2003. Theory, applications, generalizations. MR 1997038, DOI 10.1017/CBO9780511546563
- J.-P. Allouche, J. Shallit, and R. Yassawi, How to prove that a sequence is not automatic, Expo. Math. 40 (2022), no. 1, 1–22. MR 4388977, DOI 10.1016/j.exmath.2021.08.001
- Jacek Bochnak, Michel Coste, and Marie-Françoise Roy, Real algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 36, Springer-Verlag, Berlin, 1998. Translated from the 1987 French original; Revised by the authors. MR 1659509, DOI 10.1007/978-3-662-03718-8
- Valérie Berthé, Autour du système de numération d’Ostrowski, Bull. Belg. Math. Soc. Simon Stevin 8 (2001), no. 2, 209–239 (French, with French summary). Journées Montoises d’Informatique Théorique (Marne-la-Vallée, 2000). MR 1838931
- Vitaly Bergelson, Ultrafilters, IP sets, dynamics, and combinatorial number theory, Ultrafilters across mathematics, Contemp. Math., vol. 530, Amer. Math. Soc., Providence, RI, 2010, pp. 23–47. MR 2757532, DOI 10.1090/conm/530/10439
- Vitaly Bergelson and Inger Johanne Håland, Sets of recurrence and generalized polynomials, Convergence in ergodic theory and probability (Columbus, OH, 1993) Ohio State Univ. Math. Res. Inst. Publ., vol. 5, de Gruyter, Berlin, 1996, pp. 91–110. MR 1412598
- Vitaly Bergelson, Inger J. Håland Knutson, and Younghwan Son, An extension of Weyl’s equidistribution theorem to generalized polynomials and applications, Int. Math. Res. Not. IMRN 19 (2021), 14965–15018. MR 4324734, DOI 10.1093/imrn/rnaa035
- Jakub Byszewski and Jakub Konieczny, Sparse generalised polynomials, Trans. Amer. Math. Soc. 370 (2018), no. 11, 8081–8109. MR 3852458, DOI 10.1090/tran/7257
- Jakub Byszewski and Jakub Konieczny, Automatic sequences and generalised polynomials, Canad. J. Math. 72 (2020), no. 2, 392–426. MR 4081697, DOI 10.4153/s0008414x19000038
- J. Byszewski and J. Konieczny, Pisot numbers, salem numbers, and generalised polynomials, 2022, In preparation. arXiv:2302.06242
- Vitaly Bergelson and Alexander Leibman, Distribution of values of bounded generalized polynomials, Acta Math. 198 (2007), no. 2, 155–230. MR 2318563, DOI 10.1007/s11511-007-0015-y
- V. Bergelson and A. Leibman, $\textrm {IP}_r^\ast$-recurrence and nilsystems, Adv. Math. 339 (2018), 642–656. MR 3866908, DOI 10.1016/j.aim.2018.09.032
- V. Bergelson, J. Moreira, and F. K. Richter, Multiple ergodic averages along functions from a Hardy field: convergence, recurrence and combinatorial applications, 2020, Preprint, arXiv:2006.03558 [math.DS].
- M.-P. Béal, D. Perrin, and A. Restivo, Decidable problems in substitution shifts, 2021, Preprint, arXiv:2112.14499 [math.DS].
- J. W. S. Cassels, An introduction to Diophantine approximation, Cambridge Tracts in Mathematics and Mathematical Physics, No. 45, Hafner Publishing Co., New York, 1972. Facsimile reprint of the 1957 edition. MR 349591
- Yong-Gao Chen, The best quantitative Kronecker’s theorem, J. London Math. Soc. (2) 61 (2000), no. 3, 691–705. MR 1766098, DOI 10.1112/S0024610700008772
- Julien Cassaigne and Juhani Karhumäki, Toeplitz words, generalized periodicity and periodically iterated morphisms, European J. Combin. 18 (1997), no. 5, 497–510. MR 1455183, DOI 10.1006/eujc.1996.0110
- Julien Cassaigne and François Nicolas, Factor complexity, Combinatorics, automata and number theory, Encyclopedia Math. Appl., vol. 135, Cambridge Univ. Press, Cambridge, 2010, pp. 163–247. MR 2759107
- Émilie Charlier, Narad Rampersad, and Jeffrey Shallit, Enumeration and decidable properties of automatic sequences, Internat. J. Found. Comput. Sci. 23 (2012), no. 5, 1035–1066. MR 2983367, DOI 10.1142/S0129054112400448
- S. Chow and N. Technau, Counting multiplicative approximations, Ramanujan J. (2022).
- H. Davenport, On some infinite series involving arithmetical functions (II), The Quarterly Journal of Mathematics, os-8(1): 313–320, 01 1937.
- Michael Drmota, Clemens Müllner, and Lukas Spiegelhofer, Möbius orthogonality for the Zeckendorf sum-of-digits function, Proc. Amer. Math. Soc. 146 (2018), no. 9, 3679–3691. MR 3825824, DOI 10.1090/proc/14015
- Tomasz Downarowicz, Survey of odometers and Toeplitz flows, Algebraic and topological dynamics, Contemp. Math., vol. 385, Amer. Math. Soc., Providence, RI, 2005, pp. 7–37. MR 2180227, DOI 10.1090/conm/385/07188
- Fabien Durand, Decidability of the HD0L ultimate periodicity problem, RAIRO Theor. Inform. Appl. 47 (2013), no. 2, 201–214. MR 3072319, DOI 10.1051/ita/2013035
- Fabien Durand, Decidability of uniform recurrence of morphic sequences, Internat. J. Found. Comput. Sci. 24 (2013), no. 1, 123–146. MR 3061952, DOI 10.1142/S0129054113500032
- Tanja Eisner, Nilsystems and ergodic averages along primes, Ergodic Theory Dynam. Systems 40 (2020), no. 10, 2769–2777. MR 4138910, DOI 10.1017/etds.2019.27
- Manfred Einsiedler, Anatole Katok, and Elon Lindenstrauss, Invariant measures and the set of exceptions to Littlewood’s conjecture, Ann. of Math. (2) 164 (2006), no. 2, 513–560. MR 2247967, DOI 10.4007/annals.2006.164.513
- Sébastien Ferenczi, Complexity of sequences and dynamical systems, Discrete Math. 206 (1999), no. 1-3, 145–154. Combinatorics and number theory (Tiruchirappalli, 1996). MR 1665394, DOI 10.1016/S0012-365X(98)00400-2
- T. Fernique, Multidimensional Sturmian sequences and generalized substitutions, Internat. J. Found. Comput. Sci. 17(3): 575–599, 2006.
- Nikos Frantzikinakis and Bernard Host, Higher order Fourier analysis of multiplicative functions and applications, J. Amer. Math. Soc. 30 (2017), no. 1, 67–157. MR 3556289, DOI 10.1090/jams/857
- Nikos Frantzikinakis, Equidistribution of sparse sequences on nilmanifolds, J. Anal. Math. 109 (2009), 353–395. MR 2585398, DOI 10.1007/s11854-009-0035-y
- Daniel Goč, Dane Henshall, and Jeffrey Shallit, Automatic theorem-proving in combinatorics on words, Internat. J. Found. Comput. Sci. 24 (2013), no. 6, 781–798. MR 3158968, DOI 10.1142/S0129054113400182
- Sigrid Grepstad and Nir Lev, Sets of bounded discrepancy for multi-dimensional irrational rotation, Geom. Funct. Anal. 25 (2015), no. 1, 87–133. MR 3320890, DOI 10.1007/s00039-015-0313-z
- Ron Graham and Kevin O’Bryant, Can you hear the shape of a Beatty sequence?, Additive number theory, Springer, New York, 2010, pp. 39–52. MR 2744742, DOI 10.1007/978-0-387-68361-4_{3}
- W. T. Gowers, A new proof of Szemerédi’s theorem, Geom. Funct. Anal. 11 (2001), no. 3, 465–588. MR 1844079, DOI 10.1007/s00039-001-0332-9
- Ben Green and Terence Tao, An arithmetic regularity lemma, an associated counting lemma, and applications, An irregular mind, Bolyai Soc. Math. Stud., vol. 21, János Bolyai Math. Soc., Budapest, 2010, pp. 261–334. MR 2815606, DOI 10.1007/978-3-642-14444-8_{7}
- Benjamin Green and Terence Tao, Linear equations in primes, Ann. of Math. (2) 171 (2010), no. 3, 1753–1850. MR 2680398, DOI 10.4007/annals.2010.171.1753
- Ben Green and Terence Tao, The Möbius function is strongly orthogonal to nilsequences, Ann. of Math. (2) 175 (2012), no. 2, 541–566. MR 2877066, DOI 10.4007/annals.2012.175.2.3
- Ben Green and Terence Tao, The quantitative behaviour of polynomial orbits on nilmanifolds, Ann. of Math. (2) 175 (2012), no. 2, 465–540. MR 2877065, DOI 10.4007/annals.2012.175.2.2
- Ben Green, Terence Tao, and Tamar Ziegler, An inverse theorem for the Gowers $U^{s+1}[N]$-norm, Ann. of Math. (2) 176 (2012), no. 2, 1231–1372. MR 2950773, DOI 10.4007/annals.2012.176.2.11
- Inger Johanne Håland, Uniform distribution of generalized polynomials, J. Number Theory 45 (1993), no. 3, 327–366. MR 1247389, DOI 10.1006/jnth.1993.1082
- Inger Johanne Håland, Uniform distribution of generalized polynomials of the product type, Acta Arith. 67 (1994), no. 1, 13–27. MR 1292518, DOI 10.4064/aa-67-1-13-27
- E. F. Harding, The number of partitions of a set of $N$ points in $k$ dimensions induced by hyperplanes, Proc. Edinburgh Math. Soc. (2) 15 (1966/67), 285–289. MR 229128, DOI 10.1017/S0013091500011925
- Bernard Host and Bryna Kra, Nonconventional ergodic averages and nilmanifolds, Ann. of Math. (2) 161 (2005), no. 1, 397–488. MR 2150389, DOI 10.4007/annals.2005.161.397
- Bernard Host, Bryna Kra, and Alejandro Maass, Complexity of nilsystems and systems lacking nilfactors, J. Anal. Math. 124 (2014), 261–295. MR 3286054, DOI 10.1007/s11854-014-0032-7
- Jakub Konieczny, Combinatorial properties of Nil-Bohr sets, Israel J. Math. 220 (2017), no. 1, 333–385. MR 3666828, DOI 10.1007/s11856-017-1520-0
- Jakub Konieczny, Generalised polynomials and integer powers, J. Lond. Math. Soc. (2) 105 (2022), no. 1, 154–219. MR 4411322, DOI 10.1112/jlms.12509
- Daniel Krenn and Jeffrey Shallit, Decidability and $k$-regular sequences, Theoret. Comput. Sci. 907 (2022), 34–44. MR 4383214, DOI 10.1016/j.tcs.2022.01.018
- A. Leibman, Pointwise convergence of ergodic averages for polynomial sequences of translations on a nilmanifold, Ergodic Theory Dynam. Systems 25 (2005), no. 1, 201–213. MR 2122919, DOI 10.1017/S0143385704000215
- A. Leibman, A canonical form and the distribution of values of generalized polynomials, Israel J. Math. 188 (2012), 131–176. MR 2897727, DOI 10.1007/s11856-011-0097-2
- Robert J. Lemke Oliver and Kannan Soundararajan, Unexpected biases in the distribution of consecutive primes, Proc. Natl. Acad. Sci. USA 113 (2016), no. 31, E4446–E4454. MR 3624386, DOI 10.1073/pnas.1605366113
- A. I. Mal′cev, On a class of homogeneous spaces, Izv. Akad. Nauk SSSR Ser. Mat. 13 (1949), 9–32 (Russian). MR 28842
- A. I. Malcev, On a class of homogeneous spaces, Amer. Math. Soc. Translation 1951 (1951), no. 39, 33. MR 39734
- Yuri V. Matiyasevich, Hilbert’s tenth problem, Foundations of Computing Series, MIT Press, Cambridge, MA, 1993. Translated from the 1993 Russian original by the author; With a foreword by Martin Davis. MR 1244324
- Marston Morse and Gustav A. Hedlund, Symbolic Dynamics, Amer. J. Math. 60 (1938), no. 4, 815–866. MR 1507944, DOI 10.2307/2371264
- H. Mousavi, Automatic theorem proving in walnut, 2016, Preprint, arXiv:1603.06017 [math.FL].
- F. K. Richter, Uniform distribution in nilmanifolds along functions from a Hardy field, JAMA (2022). DOI 10.1007/s11854-022-0253-0.
- Michel Rigo, Formal languages, automata and numeration systems. 2, Networks and Telecommunications Series, ISTE, London; John Wiley & Sons, Inc., Hoboken, NJ, 2014. Applications to recognizability and decidability; With a foreword by Valérie Berthé. MR 3526118
- Wolfgang M. Schmidt, Norm form equations, Ann. of Math. (2) 96 (1972), 526–551. MR 314761, DOI 10.2307/1970824
- Alexander N. Starkov, Dynamical systems on homogeneous spaces, Translations of Mathematical Monographs, vol. 190, American Mathematical Society, Providence, RI, 2000. Translated from the 1999 Russian original by the author. MR 1746847, DOI 10.1090/mmono/190
- Terence Tao, Higher order Fourier analysis, Graduate Studies in Mathematics, vol. 142, American Mathematical Society, Providence, RI, 2012. MR 2931680, DOI 10.1090/gsm/142
- Terence Tao and Van Vu, Additive combinatorics, Cambridge Studies in Advanced Mathematics, vol. 105, Cambridge University Press, Cambridge, 2006. MR 2289012, DOI 10.1017/CBO9780511755149
- R. C. Vaughan, The Hardy-Littlewood method, 2nd ed., Cambridge Tracts in Mathematics, vol. 125, Cambridge University Press, Cambridge, 1997. MR 1435742, DOI 10.1017/CBO9780511470929
- Peter Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York-Berlin, 1982. MR 648108, DOI 10.1007/978-1-4612-5775-2
- Morgan Ward, The arithmetical theory of linear recurring series, Trans. Amer. Math. Soc. 35 (1933), no. 3, 600–628. MR 1501705, DOI 10.1090/S0002-9947-1933-1501705-4
- Yuan Wang and Kun Rui Yu, A note on some metrical theorems in Diophantine approximation, Chinese Ann. Math. 2 (1981), no. 1, 1–12 (English, with Chinese summary). MR 619457, DOI 10.1007/bf00646384
- Soroosh Yazdani, Multiplicative functions and $k$-automatic sequences, J. Théor. Nombres Bordeaux 13 (2001), no. 2, 651–658 (English, with English and French summaries). MR 1879677, DOI 10.5802/jtnb.342
- Tamar Ziegler, Universal characteristic factors and Furstenberg averages, J. Amer. Math. Soc. 20 (2007), no. 1, 53–97. MR 2257397, DOI 10.1090/S0894-0347-06-00532-7
Bibliographic Information
- Boris Adamczewski
- Affiliation: Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan, 69622 Villeurbanne Cedex, France
- MR Author ID: 704234
- Email: boris.adamczewski@math.cnrs.fr
- Jakub Konieczny
- Affiliation: Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan, 69622 Villeurbanne Cedex, France
- MR Author ID: 1178795
- ORCID: 0000-0003-4119-8570
- Email: jakub.konieczny@gmail.com
- Received by editor(s): March 31, 2022
- Received by editor(s) in revised form: November 15, 2022, and January 17, 2023
- Published electronically: April 19, 2023
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 4979-5044
- MSC (2020): Primary 68R15; Secondary 37A44, 11J54, 11J71, 11B37, 11B75
- DOI: https://doi.org/10.1090/tran/8906
- MathSciNet review: 4608437