Bernstein-Sato theory for singular rings in positive characteristic
HTML articles powered by AMS MathViewer
- by Jack Jeffries, Luis Núñez-Betancourt and Eamon Quinlan-Gallego;
- Trans. Amer. Math. Soc. 376 (2023), 5123-5180
- DOI: https://doi.org/10.1090/tran/8917
- Published electronically: April 3, 2023
- HTML | PDF | Request permission
Abstract:
The Bernstein-Sato polynomial is an important invariant of an element or an ideal in a polynomial ring or power series ring of characteristic zero, with interesting connections to various algebraic and topological aspects of the singularities of the vanishing locus. Work of Mustaţă, later extended by Bitoun and the third author, provides an analogous Bernstein-Sato theory for regular rings of positive characteristic.
In this paper, we extend this theory to singular ambient rings in positive characteristic. We establish finiteness and rationality results for Bernstein-Sato roots for large classes of singular rings, and relate these roots to other classes of numerical invariants defined via the Frobenius map. We also obtain a number of new results and simplified arguments in the regular case.
References
- Ian M. Aberbach and Florian Enescu, The structure of F-pure rings, Math. Z. 250 (2005), no. 4, 791–806. MR 2180375, DOI 10.1007/s00209-005-0776-y
- Josep Alvarez-Montaner, Manuel Blickle, and Gennady Lyubeznik, Generators of $D$-modules in positive characteristic, Math. Res. Lett. 12 (2005), no. 4, 459–473. MR 2155224, DOI 10.4310/MRL.2005.v12.n4.a2
- J. Àlvarez-Montaner, D. J. Hernández, J. Jeffries, L. Núñez-Betancourt, P. Teixeira, and E. E. Witt, Bernstein’s inequality and holonomicity for certain singular rings, arXiv:2103.02986, 2021.
- Josep Àlvarez Montaner, Daniel J. Hernández, Jack Jeffries, Luis Núñez-Betancourt, Pedro Teixeira, and Emily E. Witt, Bernstein-Sato functional equations, $V$-filtrations, and multiplier ideals of direct summands, Commun. Contemp. Math. 24 (2022), no. 10, Paper No. 2150083, 47. MR 4508283, DOI 10.1142/S0219199721500838
- Josep Àlvarez Montaner, Craig Huneke, and Luis Núñez-Betancourt, $D$-modules, Bernstein-Sato polynomials and $F$-invariants of direct summands, Adv. Math. 321 (2017), 298–325. MR 3715713, DOI 10.1016/j.aim.2017.09.019
- Carles Bivià-Ausina, The analytic spread of monomial ideals, Comm. Algebra 31 (2003), no. 7, 3487–3496. MR 1990285, DOI 10.1081/AGB-120022236
- V. V. Bavula, Dimension, multiplicity, holonomic modules, and an analogue of the inequality of Bernstein for rings of differential operators in prime characteristic, Represent. Theory 13 (2009), 182–227. MR 2506264, DOI 10.1090/S1088-4165-09-00352-5
- Manuel Blickle and Gebhard Böckle, Cartier modules: finiteness results, J. Reine Angew. Math. 661 (2011), 85–123. MR 2863904, DOI 10.1515/CRELLE.2011.087
- Wágner Badilla-Céspedes, $F$-invariants of Stanley-Reisner rings, J. Pure Appl. Algebra 225 (2021), no. 9, Paper No. 106671, 19. MR 4200809, DOI 10.1016/j.jpaa.2021.106671
- I. N. Bernšteĭn, Analytic continuation of generalized functions with respect to a parameter, Funkcional. Anal. i Priložen. 6 (1972), no. 4, 26–40. MR 320735
- Thomas Bitoun, On a theory of the $b$-function in positive characteristic, Selecta Math. (N.S.) 24 (2018), no. 4, 3501–3528. MR 3848026, DOI 10.1007/s00029-017-0383-x
- Holger Brenner, Jack Jeffries, and Luis Núñez-Betancourt, Quantifying singularities with differential operators, Adv. Math. 358 (2019), 106843, 89. MR 4020453, DOI 10.1016/j.aim.2019.106843
- Manuel Blickle, Test ideals via algebras of $p^{-e}$-linear maps, J. Algebraic Geom. 22 (2013), no. 1, 49–83. MR 2993047, DOI 10.1090/S1056-3911-2012-00576-1
- Nero Budur, Mircea Mustaţǎ, and Morihiko Saito, Bernstein-Sato polynomials of arbitrary varieties, Compos. Math. 142 (2006), no. 3, 779–797. MR 2231202, DOI 10.1112/S0010437X06002193
- Manuel Blickle, Mircea Mustaţǎ, and Karen E. Smith, Discreteness and rationality of $F$-thresholds, Michigan Math. J. 57 (2008), 43–61. Special volume in honor of Melvin Hochster. MR 2492440, DOI 10.1307/mmj/1220879396
- Manuel Blickle, Mircea Mustaţă, and Karen E. Smith, $F$-thresholds of hypersurfaces, Trans. Amer. Math. Soc. 361 (2009), no. 12, 6549–6565. MR 2538604, DOI 10.1090/S0002-9947-09-04719-9
- Manuel Blickle and Axel Stäbler, Bernstein-Sato polynomials and test modules in positive characteristic, Nagoya Math. J. 222 (2016), no. 1, 74–99. MR 3509223, DOI 10.1017/nmj.2016.11
- A. De Stefani, D. J. Hernández, L. Núñez-Betancourt, and E. E. Witt, $\sigma$-Modules and $\sigma$-jumping numbers, In preparation.
- Alessandro De Stefani, Luis Núñez-Betancourt, and Felipe Pérez, On the existence of $F$-thresholds and related limits, Trans. Amer. Math. Soc. 370 (2018), no. 9, 6629–6650. MR 3814343, DOI 10.1090/tran/7176
- Lawrence Ein, Robert Lazarsfeld, Karen E. Smith, and Dror Varolin, Jumping coefficients of multiplier ideals, Duke Math. J. 123 (2004), no. 3, 469–506. MR 2068967, DOI 10.1215/S0012-7094-04-12333-4
- Richard Fedder, $F$-purity and rational singularity, Trans. Amer. Math. Soc. 278 (1983), no. 2, 461–480. MR 701505, DOI 10.1090/S0002-9947-1983-0701505-0
- A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, Inst. Hautes Études Sci. Publ. Math. 24 (1965), 231 (French). MR 199181
- Melvin Hochster and Craig Huneke, Tight closure, invariant theory, and the Briançon-Skoda theorem, J. Amer. Math. Soc. 3 (1990), no. 1, 31–116. MR 1017784, DOI 10.1090/S0894-0347-1990-1017784-6
- Melvin Hochster and Craig Huneke, $F$-regularity, test elements, and smooth base change, Trans. Amer. Math. Soc. 346 (1994), no. 1, 1–62. MR 1273534, DOI 10.1090/S0002-9947-1994-1273534-X
- Craig Huneke, Mircea Mustaţă, Shunsuke Takagi, and Kei-ichi Watanabe, F-thresholds, tight closure, integral closure, and multiplicity bounds, Michigan Math. J. 57 (2008), 463–483. Special volume in honor of Melvin Hochster. MR 2492463, DOI 10.1307/mmj/1220879419
- Melvin Hochster and Joel L. Roberts, The purity of the Frobenius and local cohomology, Advances in Math. 21 (1976), no. 2, 117–172. MR 417172, DOI 10.1016/0001-8708(76)90073-6
- Craig Huneke and Irena Swanson, Integral closure of ideals, rings, and modules, London Mathematical Society Lecture Note Series, vol. 336, Cambridge University Press, Cambridge, 2006. MR 2266432
- Nobuo Hara and Ken-Ichi Yoshida, A generalization of tight closure and multiplier ideals, Trans. Amer. Math. Soc. 355 (2003), no. 8, 3143–3174. MR 1974679, DOI 10.1090/S0002-9947-03-03285-9
- M. Kashiwara, Vanishing cycle sheaves and holonomic systems of differential equations, Algebraic geometry (Tokyo/Kyoto, 1982) Lecture Notes in Math., vol. 1016, Springer, Berlin, 1983, pp. 134–142. MR 726425, DOI 10.1007/BFb0099962
- Masaki Kashiwara, $B$-functions and holonomic systems. Rationality of roots of $B$-functions, Invent. Math. 38 (1976/77), no. 1, 33–53. MR 430304, DOI 10.1007/BF01390168
- J. Kollár, Singularities of Pairs, arXiv:alg-geom/9601026, 1996.
- Gennady Lyubeznik, $F$-modules: applications to local cohomology and $D$-modules in characteristic $p>0$, J. Reine Angew. Math. 491 (1997), 65–130. MR 1476089, DOI 10.1515/crll.1997.491.65
- B. Malgrange, Le polynôme de Bernstein d’une singularité isolée, Fourier integral operators and partial differential equations (Colloq. Internat., Univ. Nice, Nice, 1974) Lecture Notes in Math., Vol. 459, Springer, Berlin-New York, 1974, pp. 98–119 (French). MR 419827
- B. Malgrange, Polynômes de Bernstein-Sato et cohomologie évanescente, Analysis and topology on singular spaces, II, III (Luminy, 1981) Astérisque, vol. 101, Soc. Math. France, Paris, 1983, pp. 243–267 (French). MR 737934
- J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, Revised edition, Graduate Studies in Mathematics, vol. 30, American Mathematical Society, Providence, RI, 2001. With the cooperation of L. W. Small. MR 1811901, DOI 10.1090/gsm/030
- Mircea Mustaţǎ, Shunsuke Takagi, and Kei-ichi Watanabe, F-thresholds and Bernstein-Sato polynomials, European Congress of Mathematics, Eur. Math. Soc., Zürich, 2005, pp. 341–364. MR 2185754
- Mircea Mustaţă, Bernstein-Sato polynomials in positive characteristic, J. Algebra 321 (2009), no. 1, 128–151. MR 2469353, DOI 10.1016/j.jalgebra.2008.08.014
- Linquan Ma and Wenliang Zhang, Eulerian graded $\scr D$-modules, Math. Res. Lett. 21 (2014), no. 1, 149–167. MR 3247047, DOI 10.4310/MRL.2014.v21.n1.a13
- Luis Núñez-Betancourt and Felipe Pérez, $F$-jumping and $F$-Jacobian ideals for hypersurfaces, J. Pure Appl. Algebra 220 (2016), no. 1, 292–318. MR 3393462, DOI 10.1016/j.jpaa.2015.06.012
- Eamon Quinlan-Gallego, Bernstein-Sato roots for monomial ideals in positive characteristic, Nagoya Math. J. 244 (2021), 25–34. MR 4335901, DOI 10.1017/nmj.2020.3
- Eamon Quinlan-Gallego, Bernstein-Sato theory for arbitrary ideals in positive characteristic, Trans. Amer. Math. Soc. 374 (2021), no. 3, 1623–1660. MR 4216719, DOI 10.1090/tran/8271
- Eamon M. Quinlan, Bernstein-Sato Theory in Positive Characteristic, ProQuest LLC, Ann Arbor, MI, 2021. Thesis (Ph.D.)–University of Michigan. MR 4352297
- Morihiko Saito, $D$-modules generated by rational powers of holomorphic functions, Publ. Res. Inst. Math. Sci. 57 (2021), no. 3-4, 867–891. MR 4322001, DOI 10.4171/prims/57-3-5
- Karl Schwede, Test ideals in non-$\Bbb {Q}$-Gorenstein rings, Trans. Amer. Math. Soc. 363 (2011), no. 11, 5925–5941. MR 2817415, DOI 10.1090/S0002-9947-2011-05297-9
- Pooja Singla, Minimal monomial reductions and the reduced fiber ring of an extremal ideal, Illinois J. Math. 51 (2007), no. 4, 1085–1102. MR 2417417
- Karen E. Smith, The $D$-module structure of $F$-split rings, Math. Res. Lett. 2 (1995), no. 4, 377–386. MR 1355702, DOI 10.4310/MRL.1995.v2.n4.a1
- Mikio Sato and Takuro Shintani, On zeta functions associated with prehomogeneous vector spaces, Proc. Nat. Acad. Sci. U.S.A. 69 (1972), 1081–1082. MR 296079, DOI 10.1073/pnas.69.5.1081
- Axel Stäbler, The associated graded module of the test module filtration, Comm. Algebra 49 (2021), no. 7, 2775–2803. MR 4274850, DOI 10.1080/00927872.2021.1882475
- Karen E. Smith and Michel Van den Bergh, Simplicity of rings of differential operators in prime characteristic, Proc. London Math. Soc. (3) 75 (1997), no. 1, 32–62. MR 1444312, DOI 10.1112/S0024611597000257
- Richard G. Swan, On seminormality, J. Algebra 67 (1980), no. 1, 210–229. MR 595029, DOI 10.1016/0021-8693(80)90318-X
- Shunsuke Takagi and Ryo Takahashi, $D$-modules over rings with finite $F$-representation type, Math. Res. Lett. 15 (2008), no. 3, 563–581. MR 2407232, DOI 10.4310/MRL.2008.v15.n3.a15
- Uli Walther, Survey on the $D$-module $f^s$, Commutative algebra and noncommutative algebraic geometry. Vol. I, Math. Sci. Res. Inst. Publ., vol. 67, Cambridge Univ. Press, New York, 2015, pp. 391–430. With an appendix by Anton Leykin. MR 3525478
- Amnon Yekutieli, An explicit construction of the Grothendieck residue complex, Astérisque 208 (1992), 127 (English, with French summary). With an appendix by Pramathanath Sastry. MR 1213064
Bibliographic Information
- Jack Jeffries
- Affiliation: Department of Mathematics, University of Nebraska-Lincoln, Lincoln, Nebraska 68588
- MR Author ID: 1058277
- Email: jack.jeffries@unl.edu
- Luis Núñez-Betancourt
- Affiliation: Centro de Investigación en Matemáticas, Guanajuato, Gto., México
- MR Author ID: 949465
- Email: luisnub@cimat.mx
- Eamon Quinlan-Gallego
- Affiliation: Department of Mathematics, University of Utah, Salt Lake City, Utah 84112
- MR Author ID: 1423988
- ORCID: 0000-0002-3282-2928
- Email: quinlan@math.utah.edu
- Received by editor(s): September 23, 2022
- Received by editor(s) in revised form: February 1, 2023
- Published electronically: April 3, 2023
- Additional Notes: The first author was partially supported by NSF CAREER Award DMS-2044833. The second author was partially supported by CONACYT Grant 284598 and Cátedras Marcos Moshinsky. The third author was partially supported by NSF DMS grants 1801697, 1840190 and 1840234.
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 5123-5180
- MSC (2020): Primary 14F10, 13N10, 13A35; Secondary 14B05
- DOI: https://doi.org/10.1090/tran/8917
- MathSciNet review: 4608440