Rational ruled surfaces as symplectic hyperplane sections
HTML articles powered by AMS MathViewer
- by Myeonggi Kwon and Takahiro Oba;
- Trans. Amer. Math. Soc. 376 (2023), 4811-4833
- DOI: https://doi.org/10.1090/tran/8919
- Published electronically: April 19, 2023
- HTML | PDF | Request permission
Abstract:
We study embeddability of rational ruled surfaces as symplectic hyperplane sections into closed integral symplectic manifolds. From this we obtain results on Stein fillability of Boothby–Wang bundles over rational ruled surfaces.References
- Lucian Bădescu, On ample divisors. II, Proceedings of the Week of Algebraic Geometry (Bucharest, 1980) Teubner-Texte Math., vol. 40, Teubner, Leipzig, 1981, pp. 12–32. MR 712513
- Lucian Bădescu, On ample divisors, Nagoya Math. J. 86 (1982), 155–171. MR 661223, DOI 10.1017/S0027763000019838
- Paul Biran and Kai Cieliebak, Symplectic topology on subcritical manifolds, Comment. Math. Helv. 76 (2001), no. 4, 712–753. MR 1881704, DOI 10.1007/s00014-001-8326-7
- Jonathan Bowden, Diarmuid Crowley, and András I. Stipsicz, The topology of Stein fillable manifolds in high dimensions I, Proc. Lond. Math. Soc. (3) 109 (2014), no. 6, 1363–1401. MR 3293153, DOI 10.1112/plms/pdu028
- Kilian Barth, Hansjörg Geiges, and Kai Zehmisch, The diffeomorphism type of symplectic fillings, J. Symplectic Geom. 17 (2019), no. 4, 929–971. MR 4031531, DOI 10.4310/JSG.2019.v17.n4.a1
- P. Biran, Lagrangian barriers and symplectic embeddings, Geom. Funct. Anal. 11 (2001), no. 3, 407–464. MR 1844078, DOI 10.1007/PL00001678
- Paul Biran, Symplectic topology and algebraic families, European Congress of Mathematics, Eur. Math. Soc., Zürich, 2005, pp. 827–836. MR 2185784
- Paul Biran and Michael Khanevsky, A Floer-Gysin exact sequence for Lagrangian submanifolds, Comment. Math. Helv. 88 (2013), no. 4, 899–952. MR 3134415, DOI 10.4171/CMH/307
- Matthew Strom Borman, Symplectic reduction of quasi-morphisms and quasi-states, J. Symplectic Geom. 10 (2012), no. 2, 225–246. MR 2926996, DOI 10.4310/JSG.2012.v10.n2.a4
- Charles P. Boyer and Justin Pati, On the equivalence problem for toric contact structures on $S^3$-bundles over $S^2$, Pacific J. Math. 267 (2014), no. 2, 277–324. MR 3207586, DOI 10.2140/pjm.2014.267.277
- Raoul Bott and Loring W. Tu, Differential forms in algebraic topology, Graduate Texts in Mathematics, vol. 82, Springer-Verlag, New York-Berlin, 1982. MR 658304, DOI 10.1007/978-1-4757-3951-0
- River Chiang, Fan Ding, and Otto van Koert, Open books for Boothby-Wang bundles, fibered Dehn twists and the mean Euler characteristic, J. Symplectic Geom. 12 (2014), no. 2, 379–426. MR 3210581, DOI 10.4310/JSG.2014.v12.n2.a6
- Fan Ding, Hansjörg Geiges, and Guangjian Zhang, On subcritically Stein fillable 5-manifolds, Canad. Math. Bull. 61 (2018), no. 1, 85–96. MR 3746475, DOI 10.4153/CMB-2017-011-8
- Luís Diogo and Samuel T. Lisi, Symplectic homology of complements of smooth divisors, J. Topol. 12 (2019), no. 3, 967–1030. MR 4072162, DOI 10.1112/topo.12105
- S. K. Donaldson, Symplectic submanifolds and almost-complex geometry, J. Differential Geom. 44 (1996), no. 4, 666–705. MR 1438190, DOI 10.4310/jdg/1214459407
- Yakov Eliashberg, Sang Seon Kim, and Leonid Polterovich, Geometry of contact transformations and domains: orderability versus squeezing, Geom. Topol. 10 (2006), 1635–1747. MR 2284048, DOI 10.2140/gt.2006.10.1635
- Takao Fujita, On the hyperplane section principle of Lefschetz, J. Math. Soc. Japan 32 (1980), no. 1, 153–169. MR 554521, DOI 10.2969/jmsj/03210153
- Hansjörg Geiges, An introduction to contact topology, Cambridge Studies in Advanced Mathematics, vol. 109, Cambridge University Press, Cambridge, 2008. MR 2397738, DOI 10.1017/CBO9780511611438
- Robert E. Gompf and András I. Stipsicz, $4$-manifolds and Kirby calculus, Graduate Studies in Mathematics, vol. 20, American Mathematical Society, Providence, RI, 1999. MR 1707327, DOI 10.1090/gsm/020
- Jean Gutt, The positive equivariant symplectic homology as an invariant for some contact manifolds, J. Symplectic Geom. 15 (2017), no. 4, 1019–1069. MR 3734608, DOI 10.4310/JSG.2017.v15.n4.a3
- Mark J. D. Hamilton, Inequivalent contact structures on Boothby-Wang five-manifolds, Math. Z. 274 (2013), no. 3-4, 719–743. MR 3078244, DOI 10.1007/s00209-012-1093-x
- R. Hind, Stein fillings of lens spaces, Commun. Contemp. Math. 5 (2003), no. 6, 967–982. MR 2030565, DOI 10.1142/S0219199703001178
- R. Hind, Symplectic hypersurfaces in ${\Bbb C}\rm P^3$, Proc. Amer. Math. Soc. 134 (2006), no. 4, 1205–1211. MR 2196058, DOI 10.1090/S0002-9939-05-08054-8
- Morris W. Hirsch, Differential topology, Graduate Texts in Mathematics, No. 33, Springer-Verlag, New York-Heidelberg, 1976. MR 448362, DOI 10.1007/978-1-4684-9449-5
- Oleg Lazarev, Contact manifolds with flexible fillings, Geom. Funct. Anal. 30 (2020), no. 1, 188–254. MR 4081058, DOI 10.1007/s00039-020-00524-6
- Eugene Lerman, Maximal tori in the contactomorphism groups of circle bundles over Hirzebruch surfaces, Math. Res. Lett. 10 (2003), no. 1, 133–144. MR 1960130, DOI 10.4310/MRL.2003.v10.n1.a13
- François Lalonde and Dusa McDuff, The classification of ruled symplectic $4$-manifolds, Math. Res. Lett. 3 (1996), no. 6, 769–778. MR 1426534, DOI 10.4310/MRL.1996.v3.n6.a5
- Dusa McDuff, The structure of rational and ruled symplectic $4$-manifolds, J. Amer. Math. Soc. 3 (1990), no. 3, 679–712. MR 1049697, DOI 10.1090/S0894-0347-1990-1049697-8
- Dusa McDuff, Symplectic manifolds with contact type boundaries, Invent. Math. 103 (1991), no. 3, 651–671. MR 1091622, DOI 10.1007/BF01239530
- Dusa McDuff and Dietmar Salamon, $J$-holomorphic curves and symplectic topology, American Mathematical Society Colloquium Publications, vol. 52, American Mathematical Society, Providence, RI, 2004. MR 2045629, DOI 10.1090/coll/052
- Dusa McDuff and Dietmar Salamon, Introduction to symplectic topology, 3rd ed., Oxford Graduate Texts in Mathematics, Oxford University Press, Oxford, 2017. MR 3674984, DOI 10.1093/oso/9780198794899.001.0001
- Hiroshi Ohta and Kaoru Ono, Simple singularities and symplectic fillings, J. Differential Geom. 69 (2005), no. 1, 1–42. MR 2169581, DOI 10.4310/jdg/1121540338
- Patrick Popescu-Pampu, On the cohomology rings of holomorphically fillable manifolds, Singularities II, Contemp. Math., vol. 475, Amer. Math. Soc., Providence, RI, 2008, pp. 169–188. MR 2454366, DOI 10.1090/conm/475/09282
- Alessandro Silva, Relative vanishing theorems. I. Applications to ample divisors, Comment. Math. Helv. 52 (1977), no. 4, 483–489. MR 460733, DOI 10.1007/BF02567380
- Andrew John Sommese, On manifolds that cannot be ample divisors, Math. Ann. 221 (1976), no. 1, 55–72. MR 404703, DOI 10.1007/BF01434964
- Chris Wendl, Strongly fillable contact manifolds and $J$-holomorphic foliations, Duke Math. J. 151 (2010), no. 3, 337–384. MR 2605865, DOI 10.1215/00127094-2010-001
- Chris Wendl. Lectures on holomorphic curves in symplectic and contact geometry. preprint, https://www.mathematik.hu-berlin.de/~wendl/pub/jhol_bookv33.pdf, 2015.
- Zhengyi Zhou, Symplectic fillings of asymptotically dynamically convex manifolds I, J. Topol. 14 (2021), no. 1, 112–182. MR 4186135, DOI 10.1112/topo.12177
Bibliographic Information
- Myeonggi Kwon
- Affiliation: Department of Mathematics Education, Sunchon National University, Suncheon 57922, Republic of Korea
- MR Author ID: 1155795
- Email: mkwon@scnu.ac.kr
- Takahiro Oba
- Affiliation: Department of Mathematics, Kyoto University, Kyoto 606-8502, Japan
- Address at time of publication: Department of Mathematics, Osaka University, Toyonaka, Osaka 560-0043, Japan
- MR Author ID: 1121272
- ORCID: 0000-0002-1715-4386
- Email: taka.oba@math.sci.osaka-u.ac.jp
- Received by editor(s): June 30, 2020
- Received by editor(s) in revised form: February 13, 2022, November 3, 2022, and November 17, 2022
- Published electronically: April 19, 2023
- Additional Notes: The first author was supported by the SFB/TRR 191 Symplectic Structures in Geometry, Algebra and Dynamics funded by the DFG and by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. NRF-2021R1F1A1060118). The second author was supported by Japan Society for the Promotion of Science KAKENHI Grant Number 18J01373.
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 4811-4833
- MSC (2020): Primary 53D35, 57R17; Secondary 53D15, 32J15
- DOI: https://doi.org/10.1090/tran/8919
- MathSciNet review: 4608433