A non-commutative Reidemeister-Turaev torsion of homology cylinders
HTML articles powered by AMS MathViewer
- by Yuta Nozaki, Masatoshi Sato and Masaaki Suzuki;
- Trans. Amer. Math. Soc. 376 (2023), 5045-5088
- DOI: https://doi.org/10.1090/tran/8925
- Published electronically: April 19, 2023
- HTML | PDF | Request permission
Abstract:
We compute the Reidemeister-Turaev torsion of homology cylinders which takes values in the $K_1$-group of the $I$-adic completion of the group ring $\mathbb {Q}\pi _1\Sigma _{g,1}$, and prove that its reduction to $\widehat {\mathbb {Q}\pi _1\Sigma _{g,1}}/\hat {I}^{d+1}$ is a finite-type invariant of degree $d$. We also show that the $1$-loop part of the LMO homomorphism and the Enomoto-Satoh trace can be recovered from the leading term of our torsion.References
- Dror Bar-Natan and Stavros Garoufalidis, On the Melvin-Morton-Rozansky conjecture, Invent. Math. 125 (1996), no. 1, 103–133. MR 1389962, DOI 10.1007/s002220050070
- Jae Choon Cha, Stefan Friedl, and Taehee Kim, The cobordism group of homology cylinders, Compos. Math. 147 (2011), no. 3, 914–942. MR 2801405, DOI 10.1112/S0010437X10004975
- Dorin Cheptea, Kazuo Habiro, and Gwénaël Massuyeau, A functorial LMO invariant for Lagrangian cobordisms, Geom. Topol. 12 (2008), no. 2, 1091–1170. MR 2403806, DOI 10.2140/gt.2008.12.1091
- Marshall M. Cohen, A course in simple-homotopy theory, Graduate Texts in Mathematics, Vol. 10, Springer-Verlag, New York-Berlin, 1973. MR 362320, DOI 10.1007/978-1-4684-9372-6
- James Conant, The Johnson cokernel and the Enomoto-Satoh invariant, Algebr. Geom. Topol. 15 (2015), no. 2, 801–821. MR 3342677, DOI 10.2140/agt.2015.15.801
- Naoya Enomoto and Takao Satoh, New series in the Johnson cokernels of the mapping class groups of surfaces, Algebr. Geom. Topol. 14 (2014), no. 2, 627–669. MR 3159965, DOI 10.2140/agt.2014.14.627
- Stefan Friedl, András Juhász, and Jacob Rasmussen, The decategorification of sutured Floer homology, J. Topol. 4 (2011), no. 2, 431–478. MR 2805998, DOI 10.1112/jtopol/jtr007
- Stavros Garoufalidis, Mikhail Goussarov, and Michael Polyak, Calculus of clovers and finite type invariants of 3-manifolds, Geom. Topol. 5 (2001), 75–108. MR 1812435, DOI 10.2140/gt.2001.5.75
- Stavros Garoufalidis and Andrew Kricker, A rational noncommutative invariant of boundary links, Geom. Topol. 8 (2004), 115–204. MR 2033481, DOI 10.2140/gt.2004.8.115
- Stavros Garoufalidis and Jerome Levine, Tree-level invariants of three-manifolds, Massey products and the Johnson homomorphism, Graphs and patterns in mathematics and theoretical physics, Proc. Sympos. Pure Math., vol. 73, Amer. Math. Soc., Providence, RI, 2005, pp. 173–203. MR 2131016, DOI 10.1090/pspum/073/2131016
- Hiroshi Goda and Takuya Sakasai, Homology cylinders and sutured manifolds for homologically fibered knots, Tokyo J. Math. 36 (2013), no. 1, 85–111. MR 3112377, DOI 10.3836/tjm/1374497513
- Mikhail Goussarov, Finite type invariants and $n$-equivalence of $3$-manifolds, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), no. 6, 517–522 (English, with English and French summaries). MR 1715131, DOI 10.1016/S0764-4442(00)80053-1
- M. N. Gusarov, Variations of knotted graphs. The geometric technique of $n$-equivalence, Algebra i Analiz 12 (2000), no. 4, 79–125 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 12 (2001), no. 4, 569–604. MR 1793618
- Kazuo Habiro, Claspers and finite type invariants of links, Geom. Topol. 4 (2000), 1–83. MR 1735632, DOI 10.2140/gt.2000.4.1
- Kazuo Habiro and Gwénaël Massuyeau, Symplectic Jacobi diagrams and the Lie algebra of homology cylinders, J. Topol. 2 (2009), no. 3, 527–569. MR 2546585, DOI 10.1112/jtopol/jtp020
- Kazuo Habiro and Gwénaël Massuyeau, From mapping class groups to monoids of homology cobordisms: a survey, Handbook of Teichmüller theory. Volume III, IRMA Lect. Math. Theor. Phys., vol. 17, Eur. Math. Soc., Zürich, 2012, pp. 465–529. MR 2952770, DOI 10.4171/103-1/9
- Tetsuya Ito, Topological formula of the loop expansion of the colored Jones polynomials, Trans. Amer. Math. Soc. 372 (2019), no. 1, 53–70. MR 3968762, DOI 10.1090/tran/7515
- Dennis Johnson, A survey of the Torelli group, Low-dimensional topology (San Francisco, Calif., 1981) Contemp. Math., vol. 20, Amer. Math. Soc., Providence, RI, 1983, pp. 165–179. MR 718141, DOI 10.1090/conm/020/718141
- Nariya Kawazumi, Cohomological aspects of Magnus expansions, arXiv:0505497v3, 2006.
- Nariya Kawazumi and Yusuke Kuno, Groupoid-theoretical methods in the mapping class groups of surfaces, arXiv:1109.6479v3, 2012.
- Paul Kirk, Charles Livingston, and Zhenghan Wang, The Gassner representation for string links, Commun. Contemp. Math. 3 (2001), no. 1, 87–136. MR 1820015, DOI 10.1142/S0219199701000299
- Takahiro Kitayama, Homology cylinders of higher-order, Algebr. Geom. Topol. 12 (2012), no. 3, 1585–1605. MR 2966696, DOI 10.2140/agt.2012.12.1585
- Andrew Kricker, The lines of the Kontsevich integral and Rozansky’s rationality conjecture, arXiv:0005284v1, 2000.
- Andrew Kricker, A surgery formula for the 2-loop piece of the LMO invariant of a pair, Invariants of knots and 3-manifolds (Kyoto, 2001) Geom. Topol. Monogr., vol. 4, Geom. Topol. Publ., Coventry, 2002, pp. 161–181. MR 2002609, DOI 10.2140/gtm.2002.4.161
- Yusuke Kuno, A combinatorial construction of symplectic expansions, Proc. Amer. Math. Soc. 140 (2012), no. 3, 1075–1083. MR 2869092, DOI 10.1090/S0002-9939-2011-10951-1
- Thang T. Q. Le, Jun Murakami, and Tomotada Ohtsuki, On a universal perturbative invariant of $3$-manifolds, Topology 37 (1998), no. 3, 539–574. MR 1604883, DOI 10.1016/S0040-9383(97)00035-9
- Chun-Yi Lin and Chia-Fu Yu, Dieudonné’s determinants and structure of general linear groups over division rings revisited, Bull. Inst. Math. Acad. Sin. (N.S.) 16 (2021), no. 1, 21–47. MR 4256015, DOI 10.21915/bimas.2021102
- Gwénaël Massuyeau, Finite-type invariants of 3-manifolds and the dimension subgroup problem, J. Lond. Math. Soc. (2) 75 (2007), no. 3, 791–811. MR 2352736, DOI 10.1112/jlms/jdm034
- Gwénaël Massuyeau, An introduction to the abelian Reidemeister torsion of three-dimensional manifolds, Ann. Math. Blaise Pascal 18 (2011), no. 1, 61–140 (English, with English and French summaries). MR 2830089, DOI 10.5802/ambp.294
- Gwénaël Massuyeau, Infinitesimal Morita homomorphisms and the tree-level of the LMO invariant, Bull. Soc. Math. France 140 (2012), no. 1, 101–161 (English, with English and French summaries). MR 2903772, DOI 10.24033/bsmf.2625
- Gwénaël Massuyeau and Jean-Baptiste Meilhan, Equivalence relations for homology cylinders and the core of the Casson invariant, Trans. Amer. Math. Soc. 365 (2013), no. 10, 5431–5502. MR 3074379, DOI 10.1090/S0002-9947-2013-05818-7
- Gwénaël Massuyeau and Takuya Sakasai, Morita’s trace maps on the group of homology cobordisms, J. Topol. Anal. 12 (2020), no. 3, 775–818. MR 4139214, DOI 10.1142/S179352531950064X
- P. M. Melvin and H. R. Morton, The coloured Jones function, Comm. Math. Phys. 169 (1995), no. 3, 501–520. MR 1328734, DOI 10.1007/BF02099310
- John Milnor, A duality theorem for Reidemeister torsion, Ann. of Math. (2) 76 (1962), 137–147. MR 141115, DOI 10.2307/1970268
- J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358–426. MR 196736, DOI 10.1090/S0002-9904-1966-11484-2
- John Milnor, Introduction to algebraic $K$-theory, Annals of Mathematics Studies, No. 72, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1971. MR 349811
- Shigeyuki Morita, Abelian quotients of subgroups of the mapping class group of surfaces, Duke Math. J. 70 (1993), no. 3, 699–726. MR 1224104, DOI 10.1215/S0012-7094-93-07017-2
- Yuta Nozaki, Masatoshi Sato, and Masaaki Suzuki, Abelian quotients of the $Y$-filtration on the homology cylinders via the LMO functor, Geom. Topol. 26 (2022), no. 1, 221–282. MR 4404878, DOI 10.2140/gt.2022.26.221
- Yuta Nozaki, Masatoshi Sato, and Masaaki Suzuki, On the kernel of the surgery map restricted to the 1-loop part, J. Topol. 15 (2022), no. 2, 587–619. MR 4441599, DOI 10.1112/topo.12233
- Tomotada Ohtsuki, Quantum invariants, Series on Knots and Everything, vol. 29, World Scientific Publishing Co., Inc., River Edge, NJ, 2002. A study of knots, 3-manifolds, and their sets. MR 1881401
- Daniel Quillen, Rational homotopy theory, Ann. of Math. (2) 90 (1969), 205–295. MR 258031, DOI 10.2307/1970725
- Daniel G. Quillen, On the associated graded ring of a group ring, J. Algebra 10 (1968), 411–418. MR 231919, DOI 10.1016/0021-8693(68)90069-0
- Jonathan Rosenberg, Algebraic $K$-theory and its applications, Graduate Texts in Mathematics, vol. 147, Springer-Verlag, New York, 1994. MR 1282290, DOI 10.1007/978-1-4612-4314-4
- L. Rozansky, The universal $R$-matrix, Burau representation, and the Melvin-Morton expansion of the colored Jones polynomial, Adv. Math. 134 (1998), no. 1, 1–31. MR 1612375, DOI 10.1006/aima.1997.1661
- L. Rozansky, A rationality conjecture about Kontsevich integral of knots and its implications to the structure of the colored Jones polynomial, Proceedings of the Pacific Institute for the Mathematical Sciences Workshop “Invariants of Three-Manifolds” (Calgary, AB, 1999), 2003, pp. 47–76. MR 1953320, DOI 10.1016/S0166-8641(02)00053-6
- Takuya Sakasai, The Magnus representation and higher-order Alexander invariants for homology cobordisms of surfaces, Algebr. Geom. Topol. 8 (2008), no. 2, 803–848. MR 2443097, DOI 10.2140/agt.2008.8.803
- Takuya Sakasai, The Magnus representation and homology cobordism groups of homology cylinders, J. Math. Sci. Univ. Tokyo 22 (2015), no. 3, 741–770. MR 3408073
- Takao Satoh, On the lower central series of the IA-automorphism group of a free group, J. Pure Appl. Algebra 216 (2012), no. 3, 709–717. MR 2864772, DOI 10.1016/j.jpaa.2011.08.006
- John Stallings, Homology and central series of groups, J. Algebra 2 (1965), 170–181. MR 175956, DOI 10.1016/0021-8693(65)90017-7
- Vladimir Turaev, Introduction to combinatorial torsions, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2001. Notes taken by Felix Schlenk. MR 1809561, DOI 10.1007/978-3-0348-8321-4
- V. G. Turaev, Reidemeister torsion in knot theory, Uspekhi Mat. Nauk 41 (1986), no. 1(247), 97–147, 240 (Russian). MR 832411
- V. G. Turaev, Euler structures, nonsingular vector fields, and Reidemeister-type torsions, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 3, 607–643, 672 (Russian); English transl., Math. USSR-Izv. 34 (1990), no. 3, 627–662. MR 1013714, DOI 10.1070/IM1990v034n03ABEH000676
Bibliographic Information
- Yuta Nozaki
- Affiliation: Graduate School of Advanced Science and Engineering/SKCM$^2$, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima City, Hiroshima 739-8526, Japan; and Faculty of Environment and Information Science, Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
- MR Author ID: 1190290
- ORCID: 0000-0003-3223-0153
- Email: nozaki-yuta-vn@ynu.ac.jp
- Masatoshi Sato
- Affiliation: Department of Mathematics, Tokyo Denki University, 5 Senjuasahi-cho, Adachi-ku, Tokyo 120-8551, Japan
- MR Author ID: 359494
- Email: msato@mail.dendai.ac.jp
- Masaaki Suzuki
- Affiliation: Department of Frontier Media Science, Meiji University, 4-21-1 Nakano, Nakano-ku, Tokyo 164-8525, Japan
- MR Author ID: 685950
- Email: mackysuzuki@meiji.ac.jp
- Received by editor(s): September 5, 2022
- Received by editor(s) in revised form: January 18, 2023
- Published electronically: April 19, 2023
- Additional Notes: This study was supported in part by JSPS KAKENHI Grant Numbers JP20K14317, JP18K03310, JP22K03298, JP19H01785, and JP20K03596.
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 5045-5088
- MSC (2020): Primary 57K16, 57Q10, 19B28; Secondary 57K31, 57K20, 17B01
- DOI: https://doi.org/10.1090/tran/8925
- MathSciNet review: 4608438