Positivity preservers forbidden to operate on diagonal blocks
HTML articles powered by AMS MathViewer
- by Prateek Kumar Vishwakarma;
- Trans. Amer. Math. Soc. 376 (2023), 5261-5279
- DOI: https://doi.org/10.1090/tran/8256
- Published electronically: May 17, 2023
- HTML | PDF | Request permission
Abstract:
The question of which functions acting entrywise preserve positive semidefiniteness has a long history, beginning with the Schur product theorem [Crelle 1911], which implies that absolutely monotonic functions (i.e., power series with nonnegative coefficients) preserve positivity on matrices of all dimensions. A famous result of Schoenberg and of Rudin [Duke Math. J. 1942, 1959] shows the converse: there are no other such functions.
Motivated by modern applications, Guillot and Rajaratnam [Trans. Amer. Math. Soc. 2015] classified the entrywise positivity preservers in all dimensions, which act only on the off-diagonal entries. These two results are at “opposite ends”, and in both cases the preservers have to be absolutely monotonic.
We complete the classification of positivity preservers that act entrywise except on specified “diagonal/principal blocks”, in every case other than the two above. (In fact we achieve this in a more general framework.) This yields the first examples of dimension-free entrywise positivity preservers - with certain forbidden principal blocks - that are not absolutely monotonic.
References
- Arthur Albert, Conditions for positive and nonnegative definiteness in terms of pseudoinverses, SIAM J. Appl. Math. 17 (1969), 434–440. MR 245582, DOI 10.1137/0117041
- Jens Peter Reus Christensen and Paul Ressel, Functions operating on positive definite matrices and a theorem of Schoenberg, Trans. Amer. Math. Soc. 243 (1978), 89–95. MR 502895, DOI 10.1090/S0002-9947-1978-0502895-2
- Carl H. FitzGerald, Charles A. Micchelli, and Allan Pinkus, Functions that preserve families of positive semidefinite matrices, Linear Algebra Appl. 221 (1995), 83–102. MR 1331791, DOI 10.1016/0024-3795(93)00232-O
- Dominique Guillot, Apoorva Khare, and Bala Rajaratnam, Complete characterization of Hadamard powers preserving Loewner positivity, monotonicity, and convexity, J. Math. Anal. Appl. 425 (2015), no. 1, 489–507. MR 3299675, DOI 10.1016/j.jmaa.2014.12.048
- Dominique Guillot, Apoorva Khare, and Bala Rajaratnam, Critical exponents of graphs, J. Combin. Theory Ser. A 139 (2016), 30–58. MR 3436051, DOI 10.1016/j.jcta.2015.11.003
- Dominique Guillot, Apoorva Khare, and Bala Rajaratnam, Preserving positivity for rank-constrained matrices, Trans. Amer. Math. Soc. 369 (2017), no. 9, 6105–6145. MR 3660215, DOI 10.1090/tran/6826
- Dominique Guillot and Bala Rajaratnam, Functions preserving positive definiteness for sparse matrices, Trans. Amer. Math. Soc. 367 (2015), no. 1, 627–649. MR 3271272, DOI 10.1090/S0002-9947-2014-06183-7
- Carl S. Herz, Fonctions opérant sur les fonctions définies-positives, Ann. Inst. Fourier (Grenoble) 13 (1963), 161–180 (French). MR 152832, DOI 10.5802/aif.137
- Georg Pólya and Gabor Szegő, Aufgaben und Lehrsätze aus der Analysis. Band II: Funktionentheorie, Nullstellen, Polynome Determinanten, Zahlentheorie, Heidelberger Taschenbücher [Heidelberg Paperbacks], Band 74, Springer-Verlag, Berlin-New York, 1971 (German). Vierte Auflage. MR 344041, DOI 10.1007/978-3-642-61987-8
- Walter Rudin, Positive definite sequences and absolutely monotonic functions, Duke Math. J. 26 (1959), 617–622. MR 109204
- I. J. Schoenberg, Positive definite functions on spheres, Duke Math. J. 9 (1942), 96–108. MR 5922, DOI 10.1215/S0012-7094-42-00908-6
- J. Schur, Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen, J. Reine Angew. Math. 140 (1911), 1–28 (German). MR 1580823, DOI 10.1515/crll.1911.140.1
- Harkrishan Vasudeva, Positive definite matrices and absolutely monotonic functions, Indian J. Pure Appl. Math. 10 (1979), no. 7, 854–858. MR 537245
Bibliographic Information
- Prateek Kumar Vishwakarma
- Affiliation: Department of Mathematics, Indian Institute of Science, Bangalore, India
- Address at time of publication: Department of Mathematics and Statistics, Room 307:14, College West, 3737 Wascana Parkway, University of Regina, SK S4S 0A2, Canada
- Email: prateekv@iisc.ac.in
- Received by editor(s): March 10, 2020
- Received by editor(s) in revised form: July 8, 2020
- Published electronically: May 17, 2023
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 5261-5279
- MSC (2020): Primary 15B48, 26A21; Secondary 15A24, 15A39, 15A45, 30B10
- DOI: https://doi.org/10.1090/tran/8256
- MathSciNet review: 4630745