A quantitative variational analysis of the staircasing phenomenon for a second order regularization of the Perona-Malik functional
HTML articles powered by AMS MathViewer
- by Massimo Gobbino and Nicola Picenni;
- Trans. Amer. Math. Soc. 376 (2023), 5307-5375
- DOI: https://doi.org/10.1090/tran/8841
- Published electronically: May 9, 2023
- HTML | PDF | Request permission
Abstract:
We consider the Perona-Malik functional in dimension one, namely an integral functional whose Lagrangian is convex-concave with respect to the derivative, with a convexification that is identically zero. We approximate and regularize the functional by adding a term that depends on second order derivatives multiplied by a small coefficient.
We investigate the asymptotic behavior of minima and minimizers as this small parameter vanishes. In particular, we show that minimizers exhibit the so-called staircasing phenomenon, namely they develop a sort of microstructure that looks like a piecewise constant function at a suitable scale.
Our analysis relies on Gamma-convergence results for a rescaled functional, blow-up techniques, and a characterization of local minimizers for the limit problem. This approach can be extended to more general models.
References
- Giovanni Alberti and Stefan Müller, A new approach to variational problems with multiple scales, Comm. Pure Appl. Math. 54 (2001), no. 7, 761–825. MR 1823420, DOI 10.1002/cpa.1013
- Roberto Alicandro, Andrea Braides, and Maria Stella Gelli, Free-discontinuity problems generated by singular perturbation, Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), no. 6, 1115–1129. MR 1664085, DOI 10.1017/S0308210500027256
- H. Amann, Time-delayed Perona-Malik type problems, Acta Math. Univ. Comenian. (N.S.) 76 (2007), no. 1, 15–38. MR 2331050
- L. Ambrosio, A compactness theorem for a new class of functions of bounded variation, Boll. Un. Mat. Ital. B (7) 3 (1989), no. 4, 857–881 (English, with Italian summary). MR 1032614
- Luigi Ambrosio, Nicola Fusco, and Diego Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000. MR 1857292
- Giovanni Bellettini, Antonin Chambolle, and Michael Goldman, The $\Gamma$-limit for singularly perturbed functionals of Perona-Malik type in arbitrary dimension, Math. Models Methods Appl. Sci. 24 (2014), no. 6, 1091–1113. MR 3187192, DOI 10.1142/S0218202513500772
- G. Bellettini and G. Fusco, The $\Gamma$-limit and the related gradient flow for singular perturbation functionals of Perona-Malik type, Trans. Amer. Math. Soc. 360 (2008), no. 9, 4929–4987. MR 2403710, DOI 10.1090/S0002-9947-08-04495-4
- Giovanni Bellettini, Giorgio Fusco, and Nicola Guglielmi, A concept of solution and numerical experiments for forward-backward diffusion equations, Discrete Contin. Dyn. Syst. 16 (2006), no. 4, 783–842. MR 2257160, DOI 10.3934/dcds.2006.16.783
- G. Bellettini, M. Novaga, M. Paolini, and C. Tornese, Convergence of discrete schemes for the Perona-Malik equation, J. Differential Equations 245 (2008), no. 4, 892–924. MR 2427400, DOI 10.1016/j.jde.2008.05.003
- Michiel Bertsch, Lorenzo Giacomelli, and Alberto Tesei, Measure-valued solutions to a nonlinear fourth-order regularization of forward-backward parabolic equations, SIAM J. Math. Anal. 51 (2019), no. 1, 374–402. MR 3911715, DOI 10.1137/18M1203821
- M. Bertsch, F. Smarrazzo, and A. Tesei, On a class of forward-backward parabolic equations: formation of singularities, J. Differential Equations 269 (2020), no. 9, 6656–6698. MR 4107065, DOI 10.1016/j.jde.2020.05.007
- Andrea Braides and Valerio Vallocchia, Static, quasistatic and dynamic analysis for scaled Perona-Malik functionals, Acta Appl. Math. 156 (2018), 79–107. MR 3829576, DOI 10.1007/s10440-018-0155-4
- Francine Catté, Pierre-Louis Lions, Jean-Michel Morel, and Tomeu Coll, Image selective smoothing and edge detection by nonlinear diffusion, SIAM J. Numer. Anal. 29 (1992), no. 1, 182–193. MR 1149092, DOI 10.1137/0729012
- Maria Colombo and Massimo Gobbino, Slow time behavior of the semidiscrete Perona-Malik scheme in one dimension, SIAM J. Math. Anal. 43 (2011), no. 6, 2564–2600. MR 2873232, DOI 10.1137/100818698
- Ennio De Giorgi, Conjectures concerning some evolution problems, Duke Math. J. 81 (1996), no. 2, 255–268 (Italian, with English summary). A celebration of John F. Nash, Jr. MR 1395405, DOI 10.1215/S0012-7094-96-08114-4
- Selim Esedoḡlu, An analysis of the Perona-Malik scheme, Comm. Pure Appl. Math. 54 (2001), no. 12, 1442–1487. MR 1852979, DOI 10.1002/cpa.3008
- Selim Esedoḡlu, Stability properties of the Perona-Malik scheme, SIAM J. Numer. Anal. 44 (2006), no. 3, 1297–1313. MR 2231865, DOI 10.1137/S0036142903424817
- Marina Ghisi and Massimo Gobbino, Gradient estimates for the Perona-Malik equation, Math. Ann. 337 (2007), no. 3, 557–590. MR 2274543, DOI 10.1007/s00208-006-0047-1
- Patrick Guidotti, A new nonlocal nonlinear diffusion of image processing, J. Differential Equations 246 (2009), no. 12, 4731–4742. MR 2523301, DOI 10.1016/j.jde.2009.03.017
- Patrick Guidotti, A backward-forward regularization of the Perona-Malik equation, J. Differential Equations 252 (2012), no. 4, 3226–3244. MR 2871799, DOI 10.1016/j.jde.2011.10.022
- Patrick Guidotti and James V. Lambers, Two new nonlinear nonlocal diffusions for noise reduction, J. Math. Imaging Vision 33 (2009), no. 1, 25–37. MR 2471042, DOI 10.1007/s10851-008-0108-z
- Satyanad Kichenassamy, The Perona-Malik paradox, SIAM J. Appl. Math. 57 (1997), no. 5, 1328–1342. MR 1470926, DOI 10.1137/S003613999529558X
- Seonghak Kim and Baisheng Yan, On Lipschitz solutions for some forward-backward parabolic equations, Ann. Inst. H. Poincaré C Anal. Non Linéaire 35 (2018), no. 1, 65–100. MR 3739928, DOI 10.1016/j.anihpc.2017.03.001
- M. Morini and M. Negri, Mumford-Shah functional as $\Gamma$-limit of discrete Perona-Malik energies, Math. Models Methods Appl. Sci. 13 (2003), no. 6, 785–805. MR 1992879, DOI 10.1142/S0218202503002726
- Stefan Müller, Singular perturbations as a selection criterion for periodic minimizing sequences, Calc. Var. Partial Differential Equations 1 (1993), no. 2, 169–204. MR 1261722, DOI 10.1007/BF01191616
- P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, Technical Report, EECS Department, University of California, Berkeley, December 1988.
- I. Ripoli, Investigation on a Perona-Malik problem, Master Thesis, University of Pisa, 2020.
Bibliographic Information
- Massimo Gobbino
- Affiliation: Dipartimento di Matematica, Università degli Studi di Pisa, PISA, Italy
- MR Author ID: 360282
- ORCID: 0000-0001-9053-3393
- Email: massimo.gobbino@unipi.it
- Nicola Picenni
- Affiliation: Scuola Normale Superiore, PISA, Italy
- MR Author ID: 1291937
- Email: nicola.picenni@sns.it
- Received by editor(s): May 25, 2022
- Received by editor(s) in revised form: September 16, 2022
- Published electronically: May 9, 2023
- © Copyright 2023 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 376 (2023), 5307-5375
- MSC (2020): Primary 49J45, 35B25, 49Q20
- DOI: https://doi.org/10.1090/tran/8841
- MathSciNet review: 4630747